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Abstract 
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E-mail Address : jn8h@virginia.edu 

Project Period : 2 years 

 

We present an experimental technique which allows us to determine the zero field intervals 

between high l  states of Rb in a magneto-optical trap (MOT), in spite of the fact that we can only 

control the stray electric field in one direction. The technique is based on measuring a property of 

the atom which depends on the field, as opposed to its square. This approach allows the 

determination of the zero field intervals and the magnitude of the stray field in the uncontrolled 

perpendicular direction. We use this technique to observe the microwave transitions of rubidium 

from the 2/5)1( dn   states to the ng  and nh  states of 3027  n . From the observed microwave 

transitions, we determine the quantum defects of the ng  and nh  states. Using the quantum defects 

of the ng  and nh  states and the adiabatic core polarization theory, we determine the Rb+ ionic 

dipole and quadrupole polarizabilities to be 3

0)2(12.9 ad    and 5

0)3(14 aq  , respectively. 
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ในโครงการวิจัยนี้เราน าเสนอเทคนิคในการทดลองแบบใหม่ซึ่งท าให้เราสามารถหาค่าความถี่ของ

การเปลี่ยนสถานะที่ระบบมีค่าสนามไฟฟ้าสถิตย์เป็นศูนย์ระหว่างสถานะโมเมนตัมเชิงมุมสูงของอะตอม

รูบิเดียมในกับดักทัศนศาสตร์ได้ถึงแม้ว่าเราสามารถควมคุมค่าสนามได้เพียงทิศทางเดียว เทคนิคนี้ได้น า

คุณสมบัติของอะตอมซึ่งขึ้นอยู่กับสนามมาใช้แทนคุณสมบัติที่ขึ้นอยู่กับก าลังสองของสนามท าให้เราหา

ค่าความถี่ที่ค่าสนามเป็นศูนย์ได้และยังท าเราสามารถหาค่าสนามที่กระจัดกระจายในทิศทางที่เราไม่

สามารถควบคุมได้ เราใช้เทคนิคนี้ในการสังเกตการเปลี่ยนสถานะของอะตอมรูบิเดียมโดยคลื่นไมโครเวฟ

จากสถานะ 2/5)1( dn   ไปยังสถานะ ng  และสถานะ nh  โดยที่ 3027  n  จากการเปลี่ยนสถานะที่

สังเกตได้เราน ามาหาค่าเบี่ยงเบนทางควอนตัมของสถานะ ng  และสถานะ nh  จากค่าเหล่านี้เราสามารถ

น ามาหาค่าความสามารถในการโพลาไรซ์แบบสองขั้วและสี่ขัว้ไฟฟ้าของไอออนรูบิเดียมได้โดยใช้ทฤษฎีการ

โพลาไรซ์แก่นไอออนแบบอเดียบาติก โดยค่าความสามารถในการโพลาไรซ์แบบสองขั้วของไอออนรูบิเดียม

เท่ากับ 3

0)2(12.9 ad   และค่าความสามารถในการโพลาไรซ์แบบสี่ขั้วของไอออนรูบิเดียมเท่ากับ 

5

0)3(14 aq   
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I. EXECUTIVE SUMMARY

The original plan is to observe the levels anticrossing of calcium in Rydberg states and

the Stark manifolds where and in external electric fields and compare the experimental

observations to the theoretical predictions. For the last TRF grant, we have published the

values of ionic dipole and quadrupole polarizabilities of barium and calcium. Therefore, it

is reasonable to continue the study of the ionic polarizabilities by measuring the intervals

of the high angular momentum Rydberg states of atoms. Therefore, for the first 6 months,

we focus our interest on determining the ionic dipole and quadrupole polarizabilities of

ytterbium (Yb) using the same technique done in the last TRF grant period. In the first 6

months of this grant period, we successfully set up the all experimental equipment needed

to run the ytterbium experiment. We have successfully measured the energy intervals of the

6s(n+3)d → 6sng and 6s(n+3)d → 6s(n+4)d transitions for 30≤ n ≤35 by the two-photon

excitation process. However, the major problem we have encountered in this experiment

is the stray electric field which we cannot identify the source. In addition, we cannot

successfully null the field. This causes broad microwave resonant linewidths. Therefore,

the uncertainty of the determined ionic dipole and quadrupole polarizabilities are large.

We again changed our attention from Yb to cold rubidium atoms trapped in the magneto-

optical trap (MOT). We decided to find the ionic dipole and quadrupole polarizabilities of

rubidium. This is because cold rubidium atoms are vastly used in atomic physics field but

the measured ionic dipole and quadrupole polarizabilities are not known precisely. We also

wanted to develop the technique to null the stray field. The MOT provided larger signals

than the thermal beam experiment. Hence, it allowed us to detect better the signals at low

field range than the observed signals in thermal beam. Therefore, we decided to use MOT

in our experiment.

Precise values for the quantum defects of the high angular momentum states are im-

portant in the calculations of the Stark effect, which are particularly important for Förster

resonant dipole-dipole energy transfer involving Rydberg atoms [1–3]. Moreover, the ionic

dipole and quadrupole polarizabilities of atoms can be determined from the same quantum

defects since they arise from polarization of the core [4]. The dipole polarizabilities of alka-

line earth ions are of interest for clock applications, and the dipole polarizabilities of alkali

atoms are of interest as benchmarks for atomic structure calculations relevant to parity vi-
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olation measurements and atom interferometry [5–10]. While most of the polarizability of

the ground state of an alkali atom is due to the valence electron, the contribution of the

ionic core is not insignificant. For example, the Rb+ dipole polarizability represents 3% of

the Rb 5s ground state polarizability [11]. For this reason, it is important to measure the

dipole polarizabilities of alkali ions.

Previous experimental values for the Rb+ dipole and quadrupole polarizabilities were

determined from the Rb nf and ng quantum defects in spite of the inverted fine structure

of the nf states [12, 13], the typical signature of the highest ℓ core penetrating state [15].

Here ℓ is the orbital angular momentum of the Rydberg electron. A third measurement used

only the nf series, and it is difficult to extract the polarizabilities from one ℓ series [14].

In all cases, the residual core penetration of the nf series leads to a large uncertainty in

the Rb+ dipole and quadrupole polarizabilities in previous work [12–14]. To obtain better

values for the core polarizabilities it would be desirable to measure the quantum defects of

non penetrating ℓ > 3 states. However, as ℓ is increased the intervals between the ℓ states

decrease, and the Stark shifts due to small stray fields become a significant problem. To

observe the intervals in zero field the field must be nulled in all directions. However, it is

often the case that in an existing apparatus the field can only be nulled in one direction,

leaving an unknown field in the plane perpendicular to that direction, and an unknown

frequency shift.

Here we report the use of an experimental technique to determine zero field intervals in

spite of the fact that we can only null the field in one direction. Specifically, we measure a

low field parameter which depends on the static field ES, not its square E2
S. This approach

enables us to determine the remaining perpendicular field and extrapolate the observed

frequencies to zero field. We have used this approach to measure the Rb zero field (n +

1)d5/2 → ng and nh intervals. We are not able to resolve the ng and nh fine structure

intervals. Based on the ℓ dependence of the fine structure intervals in other alkali atoms,

we expect them to be close to the hydrogenic 28g and 28h states which are 0.40 MHz and

0.27 MHz for hydrogen [16–19]. Combining these intervals with the known Rb nd quantum

defects we derive the quantum defects of the Rb ng and nh states of 27 ≤ n ≤ 30. From

these quantum defects we extract substantially improved values for the Rb+ ionic dipole

and quadrupole polarizabilities. In the sections which follow we describe the principle of the

approach, the experimental method, our observations, and the core polarization analysis.
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II. PRINCIPLE

To illustrate the principle of the approach, as an example we describe extracting the zero

field (n+1)d5/2 → ng intervals. The Stark shifts of the levels and the frequency shift of the

(n+1)d5/2 → ng transition are proportional to E2
S the squared magnitude of the static field

ES. It is convenient to write E2
S as

E2
S = E2

z + E2
⊥, (1)

where the field E⃗⊥ lies in the plane perpendicular to the z direction. The frequency νd5/2→g

of the (n+ 1)d5/2 → ng transition is given by

νd5/2→g = ν0,d5/2→g + PE2
S, (2)

where P is half the difference in the polarizabilities of the d and g states, and ν0,d5/2→g is the

zero field interval. The direction of E⃗S is unimportant. By applying the bias voltage Vb we

are able to control the static field in the z direction (Ez), and if we measure the resonance

frequency as a function of bias voltage Vb, or bias field Eb, we observe a parabola, with the

maximum frequency ν0,d5/2→g + PE2
⊥. This procedure leaves us with an unknown frequency

shift of PE2
⊥ because we cannot extrapolate E2

S to zero if only Ez is altered, as shown by

Eq. (1).

In contrast, if we measure a property X which is simply related to ES, given explicitly

by

ES =
√

E2
z + E2

⊥, (3)

we can extrapolate to ES = 0 and determine E2
⊥. As an example, we consider the case

in which X is proportional to ES. The procedure is to measure the resonance frequency

νd5/2→g and X as functions of Vb, or Eb, and plot νd5/2→g vs X2. The observed frequencies

should fall on a straight line, as shown by Eq. (2), and the X2 = 0 intercept is the zero field

(n+ 1)d5/2 → ng interval.

The challenge is to identify the appropriate property X, and we have explored two differ-

ent ones. In the first approach, X is the separation between Stark states. We take advantage

of the fact that, for the high ℓ states, the quantum defects are very small. Therefore, the

zero field ℓ states are converted to Stark k states, which exhibit linear Stark shifts, even in
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very small electric fields. A Stark state is assigned the label k, equal to the ℓ of the zero field

state to which it is adiabatically connected. The separation between adjacent Stark states,

∆νS = 3nES, is linear in the field ES [20]. We observe the microwave transitions from the

(n+1)d states to the nk Stark states and implicitly determine ES from ∆νS, the separation

between adjacent Stark states. For each bias voltage we obtain the value of ∆νS from the

Stark spectrum, and we measure the (n + 1)d5/2 → ng resonance frequency νd5/2→g. Plot-

ting the measured frequency νd5/2→g vs ∆ν2
S allows extrapolation to the zero field interval,

as shown by Eq. (2). An attractive feature of this approach is that only frequencies are

measured.

In the second approach, X is the amplitude of the resonance signal. This method is based

on the electric resonance method, first used in molecular beams to observe electric dipole

transitions between states of the same parity [21]. It has also been used to measure Rydberg

fine structure intervals using radio frequency electric fields [22]. The essential idea is that

the (on resonance) Rabi frequency Ω for the transition is proportional to the static field ES;

i. e. Ω ∝ ES. In the presence of the static field ES a single microwave photon can be used

to drive the (n+ 1)d5/2 → ng transition, and the Rabi frequency is given by

Ω =
⟨(n+ 1)d|µEmw|nf⟩⟨nf |µES|ng⟩

Wng −Wnf

, (4)

from which it is evident that if Emw is fixed, Ω ∝ ES. We ignore the small variations due

to the relative orientations of E⃗S and E⃗mw.

If the microwave field is present for a time T , and ΩT ≪ π, then the transition probability,

and the magnitude of the (n + 1)d5/2 → ng resonance signal S, is proportional to (ΩT )2,

which is proportional to E2
S, so in this case X ∝ E2

S. In sum,

S ∝ E2
S. (5)

A plot of the resonance frequency νd5/2→g vs S should be a straight line, the intercept of

which is the zero field (n+1)d5/2 → ng interval. As we shall see, this method, which requires

lower fields and thus smaller extrapolations, is the preferred approach.
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III. OBJECTIVE

• Determine the zero field intervals between high ℓ states of Rb in a magneto-optical

trap (MOT), in spite of the fact that we can only control the stray electric field in one

direction.

• Determine the quantum defects of the ng and nh states.

• Determine the Rb+ ionic dipole and quadrupole polarizabilities.

IV. EXPERIMENTAL APPROACH

In the experiment, 85Rb atoms in a vapor-loaded magneto-optical trap (MOT) are held at

the center of four vertical rods as shown in Fig. 1 [23]. The rods pass through the corners of

a horizontal square 18 mm on a side. The two rods opposite the microchannel plate (MCP)

detector are connected together (inside the vacuum chamber) and are used primarily to

apply a field ionization pulse, although a DC bias voltage can also be applied. The two rods

closest to the MCP are also connected together and can be grounded or biased to provide a

static field.

The direction of the applied field is horizontal and parallel to the axis of the MCP. For

simplicity, throughout this paper, we define the horizontal axis along the static electric field

as the z direction as shown in Fig. 1. With this rod configuration, which is functionally

equivalent to a pair of plates, we can only null the stray field in the z direction.

The 780 nm trap lasers are on continuously, and Rb 5p3/2 atoms in the MOT are excited

to the Rydberg (n + 1)d5/2 states by the a 10 µJ 480 nm laser pulse at a 20-Hz repetition

rate. The laser pulse is 10 ns long with bandwidth of 150 MHz. The trap magnetic fields are

switched off ∼ 4 ms before the laser pulse is fired. The trap fields in the MOT have fallen to

less than 50 mG by the time the pulsed laser fires. After the laser is fired, atoms are exposed

to the 500-ns microwave pulse to drive the (n+1)d5/2 → ng and nh transitions, as shown in

Fig. 2. The continuous microwaves are generated by an Agilent E824C PSG CW synthesized

signal generator which produces frequencies up to 20 GHz. The microwaves are then formed

into a 500-ns pulse by a General Microwave DM862B switch. The microwave frequency

is doubled by a Narda 2640X220 active doubler and then tripled by Pacific Millimeter
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W3WO passive tripler to reach frequencies in the range of 75-110 GHz. The microwave pulse

propagates through WR10 waveguide and is launched from outside the vacuum chamber into

the MOT volume by the WR10 horn. The polarization of the microwave field is nominally in

the z direction, although, due to scattering from the rods the polarization is not well known

when the microwaves reach the atoms in the MOT. During the experiment the applied static

electric field is always present. We ionize the Rydberg atoms and detect ions by applying a

3-µs rise time positive high voltage pulse to the rods ∼ 50 ns after the end of the microwave

pulse. The resulting ions are driven to the MCP detector. The signal from the MCP is

recorded with a gated integrator and stored in a computer for analysis.

FIG. 1. MOT configuration of this experiment.

V. EXPERIMENTAL OBSERVATIONS AND DISCUSSION

A. Comparison of methods for determining the zero field (n+1)d5/2 − ng intervals

In this subsection we use the 29d5/2 → 28g transition as a concrete example of differ-

ent approaches to finding the zero field intervals. Since the MOT configuration allows us

to control the static field in only one direction (E⃗z), we first observe the frequency of the

29d5/2 → 28g transition as a function of bias voltage applied to the rods, changing the

field in the z direction from positive to negative. Although d5/2 → g transitions are more

6



FIG. 2. Schematic of the Rydberg energy levels of this experiment.

commonly driven as two microwave photon transitions [17], we drive them using one mi-

crowave photon and a static field, which we can vary by changing the bias voltage Vb. The

observed frequencies of the resonances show the expected quadratic dependance on the bias

voltage, as shown in Fig. 3. Fitting the observed frequencies to a quadratic dependence on

the bias voltage gives 104 371.08(40) MHz as the maximum frequency at a bias voltage of

Vb = V0 = 0.24 V and 104367.74(40) MHz as the frequency when there is no bias voltage

(Vb = 0). At Vb = V0 = 0.24 V the stray field in the z direction is nulled. For our rod

geometry the conversion between bias voltage and bias field, the correction to Ez, at the

MOT is Eb(V/cm) = 0.406Vb(V). Accordingly, the original stray field in the z direction is

97 mV/cm, which leads to frequency shift of 3.34 MHz. The frequency 104371.08 MHz is

only a lower limit to the 29d5/2 − 28g frequency since the stray field in the x− y plane, E⊥,

is unknown. One might reasonably assume that the original stray field had approximately

equal components in all three directions, in which case the uncompensated stray field would

be 137 mV/cm, leading to an additional frequency shift of 6.68 MHz. Correcting for this

assumed uncompensated shift gives a zero field 29d5/2 − 28g interval of 104377.76 MHz.

Assigning an uncertainty presents a problem, but an uncertainty equal to correction for E⊥,

6.7 MHz does not seem unreasonable, yielding 104377.8(67) MHz as the final result for the

zero field interval.

To take into account the fields in all directions we use the approaches described in Section
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II. In the first approach we implicitly determine ES from ∆νS, the separation of adjacent

Stark states. For each bias voltage we observe a Stark spectrum, as shown in Fig. 4(a), and

the d5/2 → g transition with a lower microwave power in Fig. 4(b). The d5/2 → g transition

also appears in Fig. 4(a), but it is power broadened when the high k states are visible. The

frequency separation ∆νS between adjacent Stark states is proportional to ES. For each

bias voltage we obtain values of the d5/2 → g frequency νd5/2→g and ∆νS, taken from the

high k states indicated in Fig. 4(a). From these pairs of points we construct the parametric

plot of the d5/2 → g frequency vs ∆ν2
S. As shown in Fig. 5, the result is a straight line, as

expected from Eq. (2), and its intercept is the zero field d5/2 → g interval. From Fig. 5, we

obtain the zero field 29d5/2 → 28g transition frequency to be 104 378.9(62) MHz.

This approach has the attraction that we are measuring frequencies, but it has the obvious

problem that the fields must be large enough to obtain good values for the separation between

the Stark states. The relatively large fields require a long extrapolation, 40 MHz, to zero

field, and they introduce the possibility that the Stark shift of the transition frequency may

not be adequately represented by Eq. (2). A variant of this technique is to conduct the

Stark spectroscopy at higher n, where the separations are larger, allowing the use of smaller

fields. This approach has been used by Stevens and Lundeen to monitor static fields [24].

To conduct measurements in lower static fields we use the second approach described in

Section II. Specifically, we measure the signal amplitude S of the (n+1)d5/2 → ng transition

at different bias voltages. Since we are driving the transition with one microwave photon

and a static field, for a fixed microwave amplitude the Rabi frequency is proportional to

the static field, as shown by Eq. (4). The experiment is conducted in the low transition

probability regime in which S is proportional to E2
S. The procedure is similar to that used for

the Stark spectroscopy approach. For each bias voltage we observe the d5/2 → g resonance,

as shown in Fig. 6(a) for bias voltages between 0.34 and 0.61 V. As shown by Fig. 6(a), the

signal amplitude S increases and the resonance frequency νd5/2→g shifts with increasing bias

voltage. Since S ∝ E2
S, a parametric plot of νd5/2→g vs S yields a straight line, the intercept

of which is the zero field d5/2 → g frequency as shown in Fig. 6(b). From Fig. 6(b), the

zero field 29d5/2 → 28g frequency is 104 372.70(28) MHz. The extrapolation in this method

is ∼4 MHz which is much less than the aforementioned approach, which results in a smaller

uncertainty in determining the the zero field 29d5/2 → 28g frequency.

In Fig. 6 we have not explicitly used the bias voltages, but from them we can extract
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the values of the perpendicular stray field. When the observed frequencies are plotted vs

the bias voltages Vb we obtain a parabola similar to Fig. 3, with the maximum frequency of

104369.87(44) MHz occurring at Vb = V0 = 0.875 V. Since S is proportional to E2
S, we write

S = aE2
S = a(E2

z + E2
⊥), (6)

where a is a constant. In Fig. 7 we plot S vs (Vb − V0)
2, which is in effect a plot of S vs E2

z ,

as shown by the horizontal scale at the top of the figure. At the S intercept of the graph

Ez = 0 and E2
S = E2

⊥. The slope a = dS/dE2
S, combining these two values from Fig. 7,

we obtain E⊥ = 91 mV/cm. We can check this value for E⊥ using a different approach.

With Vb = 0 the observed frequency is 104326.05 MHz. With Vb = V0 = 0.875 V, so that

Ez = 0 mV/cm, results in a shift of 43.82 MHz. To reach the zero field value requires a

further shift of 2.83 MHz, which implies that E⊥ = 90 mV/cm, in good agreement with

the value given above. It is instructive to apply the same method of analysis to the data

of Fig. 3, which leads to E⊥ = 68 mV/cm. The data shown in Fig. 3 and Fig. 6 were

taken with opposite polarity field ionization pulses, which result in different bias fields in

the z direction. Nonetheless the values for E⊥ are similar. In addition the values for E⊥

are smaller than the bias field in the z direction due to the fact that the bias field in the z

direction is determined by an external circuit.

At this point it is useful to compare the three approaches we have described. The first

method, measuring transition frequency as a function of bias voltage, allows the determi-

nation of the 29d5/2 → 28g frequency with high precision, but the observed frequency is

the zero field 29d5/2 − 28g interval altered by an unknown Stark shift due to the uncanceled

stray field E⊥. Estimating the Stark shift due to E⊥ by assuming that the magnitudes of the

stray field |Ex|, |Ey| and |Ez| are the same, we arrived at a zero field 29d5/2−28g interval of

104377.8(67) MHz. The second method, measuring transition frequency as a function of sep-

aration of adjacent Stark states, yields a 29d5/2 → 28g frequency transition of 104 378.9(62)

MHz. This method has the distinct advantage of actually measuring |E⊥|, but it has the

disadvantage of requiring a long extrapolation to zero field, which results in an uncertainty

of 6.2 MHz, not really much better than the estimated uncertainty of the first method. The

third method, measuring transition frequency as a function of the signal amplitude, yields

a 29d5/2 → 28g frequency transition of 104 372.70(28) MHz. The shorter extrapolation

results in a smaller uncertainty, 0.28 MHz, of the the zero field 29d5/2 → 28g frequency
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and using this method we estimate E⊥ to be 91 mV/cm, slightly less than our estimate of

137 mV/cm made on the basis of simply measuring the frequency vs the bias voltage Vb.

Comparing the three methods shows that the third method, unlike the first method, has a

known uncertainty and it is a factor of twenty smaller than the uncertainty of the second

method. Consequently, we use the third method to determine the zero field intervals in the

sections that follow. Finally, we note that, although the stray field varies from day to day,

the zero field intervals extracted remain constant, within their uncertainties.
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FIG. 3. The frequency of the microwave 29d5/2 → 28g transition vs bias electric field in the z

direction. The maximum frequency is 104 371.08(40) MHz at a bias voltage of Vb = V0 = 0.24 V.

At this bias, Ez is nulled.

B. The (n+ 1)d5/2 − ng intervals and ng quantum defects

While measuring signal strengths is less appealing than measuring frequencies, as in the

separation between the Stark states, the much lower static fields make the signal amplitude

method more attractive, and we have used it to measure the (n + 1)d5/2 → ng transition
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FIG. 4. (a) The 29d5/2 → 28k Stark spectrum at bias voltage of Vb = −1.3 V at the relative

microwave power 1. The high k states are indicated in the graph. (b) The 29d5/2 → 28g transition

at the same bias field as (a) but a relative microwave power of 0.032.
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FIG. 5. The 29d5/2 → 28g transition frequency vs the square of the Stark splitting of the high

k states (∆ν2S) obtained from Stark spectroscopy. At ∆ν2S=0, the stray field is zero and the

29d5/2 → 28g transition frequency is 104 378.9(62) MHz.

frequencies for 27 ≤ n ≤ 30, as shown in Table I. To find the quantum defects of the

ng states, we add the known quantum defects of the nd states from Ref. [25] and the

(n+1)d5/2 → ng transition frequencies. The values of the quantum defects of the ng states

of 27 ≤ n ≤ 30 are shown in Table I. Ref [12, 13, 26] measured quantum defects of the

ng states to be 0.00400(9), 0.00405(6) and 0.00402(8), respectively. Ref [12, 13] did not

consider n dependence and Ref. [26] measured only the 30g quantum defect. As seen from

Table I, our values of the quantum defect have improved upon the previous measurements

by an order of magnitude.

Our quantum defects show a slight n dependence, and we fit them to a Ritz formula,

δg = δ0 +
δ1

(n− δ0)2
, (7)

which yields the values δ0 = 0.00400(2) and δ1 = −0.018(15).
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TABLE I. The (n + 1)d5/2 → ng microwave transition frequencies in zero stray electric field and

the extracted quantum defects of ng.

n Transition frequency (MHz) Quantum defect

27 116 464.54(35) 0.0039737(11)

28 104 372.70(28) 0.0039701(10)

29 93 895.75(34) 0.0039746(13)

30 84 775.26(65) 0.0039778(27)

C. The (n+ 1)d5/2 − nh intervals and nh quantum defects

We obtain the zero field (n+1)d5/2 → nh intervals in much the same way as we obtained

the (n + 1)d5/2 → ng intervals. We drive the d5/2 → h transitions using one microwave

photon and a static field. The Rabi frequency Ω is given by

Ω =
⟨d|µEmw|f⟩⟨f |µEs|g⟩⟨g|µEs|h⟩

(Wng −Wnf )(Wnh −Wng)
. (8)

In this case Ω ∝ E2
S, and in the small transition probability regime S ∝ E4

S. The experiment

is conducted in much the same way as the d5/2 → g measurements; for different bias voltages

the signal amplitude S and resonance frequency νd5/2→h are measured while keeping the

microwave field amplitude fixed. Fig. 8 shows the 29d5/2 → 28h transition as an example.

A parametric plot of νd5/2→h vs
√
S should give a straight line, the intercept of which is

the the zero field d5/2 − h interval, and in Fig. 9 we present this plot for the 29d5/2 → 28h

transition. As shown, the plot matches our expectation and yields the zero field interval of

105 140.87(77) MHz. Following the same procedure we have measured the (n+1)d5/2 → nh

intervals for 28 ≤ n ≤ 30, with the results shown in Table II. In Table II we also give the nh

quantum defects, obtained in a manner analogous to that used to obtain the ng quantum

defects.

D. The Rb+ ionic dipole and quadrupole polarizabilities

We use the values of quantum defects that we have determined and the adiabatic core

polarization model of Mayer and Mayer to extract the ionic dipole and quadrupole polariz-
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TABLE II. The (n+ 1)d5/2 → nh microwave transition frequencies in zero stray electric field and

the extracted quantum defects of nh.

n Transition frequency (MHZ) Quantum defect

28 105 140.9 (8) 0.0014078(27)

29 94 591.0 (22) 0.0013982(82)

30 85 400.3 (15) 0.0014137(62)

abilities of Rb+ [4]. For the high ℓ states, where ℓ > 3, the energy levels of the Rb atoms

are depressed from the hydrogenic levels only by core polarization; core penetration is neg-

ligible. In Rb the Rydberg electron moves much more slowly than the electrons in the core,

and the Rb+ core is polarized by the slowly varying field from the Rydberg electron. The

polarization interaction between the Rydberg electron and the ion core depresses the energy

of the Rb nℓ Rydberg state below the energy of a hydrogenic nℓ state by

Wpol,nℓ = −αd

2
⟨1/r4nℓ⟩ −

αq

2
⟨1/r6nℓ⟩, (9)

where αd and αq are the ionic dipole and quadrupole polarizabilities. The expectation values

of ⟨1/r4nℓ⟩ and ⟨1/r6nℓ⟩ are the squares of the field and the field gradient of the Rydberg

electron in the nℓ state at the core. The resulting energy of the Rb nℓ state is given by

Wnℓ = −1/2n2 +Wpol,nℓ. (10)

The energy levels of the Rydberg nℓ state can also be expressed as

Wnℓ = −1/2(n− δnℓ)
2, (11)

where δnℓ is the quantum defect of the Rydberg nℓ state. Since n is much larger than δnℓ,

using a Taylor expansion we can express the polarization energy as

Wpol,nℓ = 1/2n2 +Wnℓ
∼= −δnℓ

n3
. (12)

From Eqs. (9) and (12), we get

δnℓ
n3

=
αd

2
⟨1/r4nℓ⟩+

αq

2
⟨1/r6nℓ⟩. (13)
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We can rewrite Eq. (13) as

2
δnℓ

n3⟨1/r4nℓ⟩
= αd + αq

⟨1/r6nℓ⟩
⟨1/r4nℓ⟩

. (14)

Eq. (14) implies that a graph of 2δnℓ/(n
3⟨r−4

nℓ ⟩) vs ⟨r−6
nℓ ⟩/⟨r

−4
nℓ ⟩ is linear, with αd as the

intercept and αq as the slope of the graph. Here the values of δnℓ are the experimentally

determined values given above for 27 ≤ n ≤ 30, l = 4 and 5. We use the known analytic

expressions for ⟨r−4
nℓ ⟩ and ⟨r−6

nℓ ⟩ for the nℓ states of hydrogen [27, 28]. In Fig. 10 we plot the

graph of 2δnℓ/(n
3⟨r−4

nℓ ⟩) vs ⟨r
−6
nℓ ⟩/⟨r

−4
nℓ ⟩, and we determine the ionic dipole and quadrupole

polarizabilities to be αd = 9.12(2) a30 and αq = 14(3) a50, respectively. In Table III, we

compare the Rb+ ionic dipole and quadrupole polarizabilities obtained from our work to

other theoretical and experimental work. Our ionic dipole polarizability agrees with the

earlier experimental determinations but has a much smaller uncertainty, and it agrees very

well with the theoretical predictions. Refs. [6, 11] contain excellent summaries of the theory

of ionic polarizabilities. The experimental values for the ionic dipole polarizability from

Refs. [12–14] are determined from the nf and ng energy levels using the core polarization

model. Although the nf states are core penetrating states which should not be treated using

the core polarization analysis alone, the values obtained for αd are consistent with ours.

Our ionic quadrupole polarizability falls within the broad limits set in Refs. [12, 13] but

is about a factor of two lower than the theoretical prediction. In the latter connection it is

noteworthy that core polarization analyses of Rydberg quantum defects of other elements

have consistently yielded ionic quadrupole polarizabilities that are lower than theoretically

predicted [16, 32–35]. It is a worthy theoretical challenge to pinpoint the source of the

discrepancy between the theoretical and experimental values. We believe that the core

polarization model needs to be reexamined closely. We hope this will motivate theorists to

take a closer look at the core polarization model.

VI. CONCLUSION

We have presented an experimental technique to determine zero field transition frequen-

cies in spite of our inability to completely cancel the stray field. We use the technique to

measure the microwave transition frequencies from the Rydberg (n + 1)d5/2 states to the

Rydberg ng and nh states, 27 ≤ n ≤ 30. The ng and nh quantum defects of the measured
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TABLE III. The Rb+ dipole (αd) and quadrupole (αq) polarizabilities obtained from this work and

other theoretical (Th) and experimental (Exp) results.

αd (a30) αq (a50)

This work 9.12(2) 14(3)

Other works 8.9< αd <9.3 (Exp) [12] 0< αq <43 (Exp) [12]

8.5< αd <9.7 (Exp) [13] 0< αq <55 (Exp) [13]

8.98 (Exp) [14] 35.4 (Th) [11]

9.1 (Th) [11] 38.37 (Th) [30]

9.11 (Th) [31] 35.41 (Th) [29]

9.076 (Th) [29]

n states are determined from the observed microwave transition frequencies. We extract

the Rb+ ionic dipole and quadrupole polarizabilities from the values of quantum defects to

be αd = 9.12(2) a30 and αq = 14(3) a50, respectively. The Rb+ dipole polarizability agrees

well with recent theoretical values. However, the Rb+ αq is about a factor of 2 lower than

the theoretical prediction. The discrepancy between theoretical and experimental values is

consistent with the determined αq of other elements using the core polarization analysis. We

hope this work will motivate theoretical work to locate the source of discrepancy between

the experimental and theoretical values of αq in the core polarization analysis.

VII. OUTLOOK

This work can be improved by exciting the Rydberg electron to higher angular momentum

states ℓ > 5. It is possible to optically excite the Rydberg electron to ℓ = 3 and use

microwave to further excite the Rydberg electron to ℓ = 6, three-photon excitation. This

will give more precise values of dipole and quadrupole polarizabilities since it adds more

data points to the adiabatic graph. We are hoping to continue working on this topic to

improve the values of Rb+ polarizabilities.
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FIG. 6. (a) The observed the 29d5/2 → 28g resonance signals with different bias voltages. As shown

by the slanted line, the signal amplitude varies linearly with the observed resonance frequency. The

resonance frequency increases and the signal amplitude decreases as the bias voltage is reduced from

Vb = 0.61 V to 0.34 V, which reduces Ez from 150 mV/cm to 41 mV/cm. (b) The 29d5/2 → 28g

microwave transition frequency as a function of the relative 28g signal amplitude. From the graph,

the 29d5/2 → 28g transition frequency at zero stray field is 104 372.70(28) MHz.
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FIG. 7. The graph of the relative 28g signal amplitude (S) as a function of squared voltage

(Vb − V0)
2 and squared static field E2

z in the z direction of the system. Since S = a(E2
z + E2

⊥),

from the intercept and slope of the graph we determine E⊥ to be 91 mV/cm.
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points for the ng quantum defects, 27 ≤ n ≤ 30. A fit to the straight line yields the y-intercept

and slope, which are αd and αq, respectively. The resulting fit values are αd = 9.12(2) a30 and

αq = 14(3) a50.

23



ภาคผนวก 

 

ผลงานตีพมิพ์ในวารสารวิชาการนานาชาติ 

Jeonghun Lee, J. Nunkaew* and T. F. Gallagher, “Microwave spectroscopy of the cold rubidium 

(n+1)d5/2 ngdn  2/5)1( and nh  transitions”, Phys. Rev. A 94, 022505 (2016). 

*หัวหน้าโครงการวิจัยเป็น corresponding author 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PHYSICAL REVIEW A 94, 022505 (2016)

Microwave spectroscopy of the cold rubidium (n + 1)d5/2 → ng and nh transitions
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We present an experimental technique that allows us to determine the zero-field intervals between high-� states
of Rb in a magneto-optical trap, in spite of the fact that we can only control the stray electric field in one direction.
The technique is based on measuring a property of the atom that depends on the field, as opposed to its square.
This approach allows the determination of the zero-field intervals and the magnitude of the stray field in the
uncontrolled perpendicular direction. We use this technique to observe the microwave transitions of rubidium
from the (n + 1)d5/2 states to the ng and nh states of 27 � n � 30. From the observed microwave transitions,
we determine the quantum defects of the ng and nh states. Using the quantum defects of the ng and nh states
and the adiabatic core polarization theory, we determine the Rb+ ionic dipole and quadrupole polarizabilities to
be αd = 9.12(2)a3

0 and αq = 14(3)a5
0 , respectively.

DOI: 10.1103/PhysRevA.94.022505

I. INTRODUCTION

Precise values for the quantum defects of the high angular
momentum states are important in the calculations of the Stark
effect, which are particularly important for Förster resonant
dipole-dipole energy transfer involving Rydberg atoms [1–3].
Moreover, the ionic dipole and quadrupole polarizabilities of
atoms can be determined from the same quantum defects since
they arise from polarization of the core [4]. The dipole polar-
izabilities of alkaline-earth ions are of interest for clock ap-
plications and the dipole polarizabilities of alkali-metal atoms
are of interest as benchmarks for atomic structure calculations
relevant to parity-violation measurements and atom interfer-
ometry [5–10]. While most of the polarizability of the ground
state of an alkali-metal atom is due to the valence electron, the
contribution of the ionic core is not insignificant. For example,
the Rb+ dipole polarizability represents 3% of the Rb 5s

ground-state polarizability [11]. For this reason, it is important
to measure the dipole polarizabilities of alkali-metal ions.

Previous experimental values for the Rb+ dipole and
quadrupole polarizabilities were determined from the Rb nf

and ng quantum defects in spite of the inverted fine structure of
the nf states [12,13], the typical signature of the highest-� core
penetrating state [14]. Here � is the orbital angular momentum
of the Rydberg electron. A third measurement used only the
nf series, and it is difficult to extract the polarizabilities from
one � series [15]. In all cases, the residual core penetration of
the nf series leads to a large uncertainty in the Rb+ dipole
and quadrupole polarizabilities in previous work [12,13,15].
To obtain better values for the core polarizabilities it would be
desirable to measure the quantum defects of nonpenetrating
� > 3 states. However, as � is increased the intervals between
the � states decrease and the Stark shifts due to small stray
fields become a significant problem. To observe the intervals
in zero field the field must be nulled in all directions. However,
it is often the case that in an existing apparatus the field can
only be nulled in one direction, leaving an unknown field

*jl7rf@virginia.edu
†Corresponding author: jn8h@virginia.edu

in the plane perpendicular to that direction and an unknown
frequency shift.

Here we report the use of an experimental technique to
determine zero-field intervals in spite of the fact that we
can only null the field in one direction. Specifically, we
measure a low-field parameter that depends on the static
field ES , not its square E2

S . This approach enables us to
determine the remaining perpendicular field and extrapolate
the observed frequencies to zero field. We have used this
approach to measure the Rb zero-field (n + 1)d5/2 → ng and
nh intervals. We are not able to resolve the ng and nh

fine-structure intervals. Based on the � dependence of the
fine-structure intervals in other alkali-metal atoms, we expect
them to be close to the hydrogenic 28g and 28h states, which
are, respectively, 0.40 and 0.27 MHz for hydrogen [16–19].
Combining these intervals with the known Rb nd quantum
defects, we derive the quantum defects of the Rb ng and
nh states of 27 � n � 30. From these quantum defects we
extract substantially improved values for the Rb+ ionic dipole
and quadrupole polarizabilities. In the sections that follow
we describe the principle of the approach, the experimental
method, our observations, and the core polarization analysis.

II. PRINCIPLE

To illustrate the principle of the approach, as an example we
describe extracting the zero-field (n + 1)d5/2 → ng intervals.
The Stark shifts of the levels and the frequency shift of the
(n + 1)d5/2 → ng transition are proportional to E2

S the squared
magnitude of the static field ES . It is convenient to write E2

S

as

E2
S = E2

z + E2
⊥, (1)

where the field �E⊥ lies in the plane perpendicular to the
z direction. The frequency νd5/2→g of the (n + 1)d5/2 → ng

transition is given by

νd5/2→g = ν0,d5/2→g + PE2
S, (2)

where P is half the difference in the polarizabilities of the d and
g states and ν0,d5/2→g is the zero-field interval. The direction

2469-9926/2016/94(2)/022505(8) 022505-1 ©2016 American Physical Society
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of �ES is unimportant. By applying the bias voltage Vb we
are able to control the static field in the z direction (Ez), and
if we measure the resonance frequency as a function of bias
voltage Vb, or bias field Eb, we observe a parabola, with the
maximum frequency ν0,d5/2→g + PE2

⊥. This procedure leaves
us with an unknown frequency shift of PE2

⊥ because we cannot
extrapolate E2

S to zero if only Ez is altered, as shown by Eq. (1).
In contrast, if we measure a property X that is simply related

to ES , given explicitly by

ES =
√

E2
z + E2

⊥, (3)

we can extrapolate to ES = 0 and determine E2
⊥. As an

example, we consider the case in which X is proportional
to ES . The procedure is to measure the resonance frequency
νd5/2→g and X as functions of Vb, or Eb, and plot νd5/2→g vs
X2. The observed frequencies should fall on a straight line, as
shown by Eq. (2), and the X2 = 0 intercept is the zero-field
(n + 1)d5/2 → ng interval.

The challenge is to identify the appropriate property X, and
we have explored two different ones. In the first approach, X

is the separation between Stark states. We take advantage of
the fact that, for the high-� states, the quantum defects are very
small. Therefore, the zero-field � states are converted to Stark
k states, which exhibit linear Stark shifts, even in very small
electric fields. A Stark state is assigned the label k, equal to the
� of the zero-field state to which it is adiabatically connected.
The separation between adjacent Stark states �νS = 3nES

is linear in the field ES [20]. We observe the microwave
transitions from the (n + 1)d5/2 states to the nk Stark states
and implicitly determine ES from �νS , the separation between
adjacent Stark states. For each bias voltage we obtain the
value of �νS from the Stark spectrum and we measure the
(n + 1)d5/2 → ng resonance frequency νd5/2→g . Plotting the
measured frequency νd5/2→g vs �ν2

S allows extrapolation to
the zero-field interval, as shown by Eq. (2). An attractive
feature of this approach is that only frequencies are measured.

In the second approach, X is the amplitude of the resonance
signal. This method is based on the electric resonance method,
first used in molecular beams to observe electric dipole
transitions between states of the same parity [21]. It has
also been used to measure Rydberg fine-structure intervals
using radio-frequency electric fields [22]. The essential idea
is that the (on-resonance) Rabi frequency � for the transition is
proportional to the static field ES ; i.e., � ∝ ES . In the presence
of the static field ES a single microwave photon can be used to
drive the (n + 1)d5/2 → ng transition and the Rabi frequency
is given by

� = 〈(n + 1)d|μEmw|nf 〉〈nf |μES |ng〉
Wng − Wnf

, (4)

from which it is evident that if Emw is fixed, � ∝ ES . We
ignore the small variations due to the relative orientations of
�ES and �Emw.

If the microwave field is present for a time T , and �T � π ,
then the transition probability, as well as the magnitude of
the (n + 1)d5/2 → ng resonance signal S, is proportional to
(�T )2, which is proportional to E2

S , so in this case X ∝ E2
S .

FIG. 1. The MOT configuration of this experiment.

In sum,

S ∝ E2
S. (5)

A plot of the resonance frequency νd5/2→g vs S should
be a straight line, the intercept of which is the zero-field
(n + 1)d5/2 → ng interval. As we will see, this method, which
requires lower fields and thus smaller extrapolations, is the
preferred approach.

III. EXPERIMENTAL APPROACH

In the experiment, 85Rb atoms in a vapor-loaded magneto-
optical trap (MOT) are held at the center of four vertical rods
as shown in Fig. 1 [23]. The rods pass through the corners of
a horizontal square, 18 mm on a side. The two rods opposite
the microchannel plate (MCP) detector are connected together
(inside the vacuum chamber) and are used primarily to apply
a field ionization pulse, although a dc bias voltage can also be
applied. The two rods closest to the MCP are also connected
together and can be grounded or biased to provide a static field.

The direction of the applied field is horizontal and parallel
to the axis of the MCP. For simplicity, throughout this paper,
we define the horizontal axis along the static electric field as
the z direction as shown in Fig. 1. With this rod configuration,
which is functionally equivalent to a pair of plates, we can
only null the stray field in the z direction.

The 780-nm trap lasers are on continuously and Rb 5p3/2

atoms in the MOT are excited to the Rydberg (n + 1)d5/2

states by the a 10-μJ 480-nm laser pulse at a 20-Hz repetition
rate. The laser pulse is 10 ns long with a bandwidth of 150
MHz. The trap magnetic fields are switched off ∼4 ms before
the laser pulse is fired. The trap fields in the MOT have fallen
to less than 50 mG by the time the pulsed laser fires. After the
laser is fired, atoms are exposed to the 500-ns microwave pulse
to drive the (n + 1)d5/2 → ng and nh transitions, as shown in
Fig. 2. The continuous microwaves are generated by an Agilent
E824C PSG CW synthesized signal generator, which produces
frequencies up to 20 GHz. The microwaves are then formed
into a 500-ns pulse by a General Microwave DM862B switch.
The microwave frequency is doubled by a Narda 2640X220
active doubler and then tripled by Pacific Millimeter W3WO
passive tripler to reach frequencies in the range of 75–110 GHz.
The microwave pulse propagates through WR10 waveguide
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FIG. 2. Schematic of the Rydberg energy levels of this experiment.

and is launched from outside the vacuum chamber into the
MOT volume by the WR10 horn. The polarization of the
microwave field is nominally in the z direction, although, due
to scattering from the rods, the polarization is not well known
when the microwaves reach the atoms in the MOT. During the
experiment the applied static electric field is always present.
We ionize the Rydberg atoms and detect ions by applying a
3-μs rise time positive high-voltage pulse to the rods ∼ 50
ns after the end of the microwave pulse. The resulting ions
are driven to the MCP detector. The signal from the MCP is
recorded with a gated integrator and stored in a computer for
analysis.

IV. EXPERIMENTAL OBSERVATIONS AND DISCUSSION

A. Comparison of methods for determining
the zero-field (n + 1)d5/2-ng intervals

In this subsection we use the 29d5/2 → 28g transition as
a concrete example of different approaches to finding the
zero-field intervals. Since the MOT configuration allows us
to control the static field in only one direction ( �Ez), we first
observe the frequency of the 29d5/2 → 28g transition as a
function of bias voltage applied to the rods, changing the field
in the z direction from positive to negative. Although d5/2 → g

transitions are more commonly driven as two microwave
photon transitions [17], we drive them using one microwave
photon and a static field, which we can vary by changing the
bias voltage Vb. The observed frequencies of the resonances
show the expected quadratic dependence on the bias voltage, as
shown in Fig. 3. Fitting the observed frequencies to a quadratic
dependence on the bias voltage gives 104 371.08(40) MHz as
the maximum frequency at a bias voltage of Vb = V0 = 0.24 V
and 104367.74(40) MHz as the frequency when there is no
bias voltage (Vb = 0). At Vb = V0 = 0.24 V the stray field in
the z direction is nulled. For our rod geometry the conversion
between bias voltage and bias field, the correction to Ez, at
the MOT is Eb = 0.406Vb (with Eb in units of V/cm and Vb

in V). Accordingly, the original stray field in the z direction
is 97 mV/cm, which leads to frequency shift of 3.34 MHz.
The frequency 104 371.08 MHz is only a lower limit to the
29d5/2-28g frequency since the stray field in the x-y plane,
E⊥, is unknown. One might reasonably assume that the
original stray field had approximately equal components in all
three directions, in which case the uncompensated stray field
would be 137 mV/cm, leading to an additional frequency shift

FIG. 3. Frequency of the microwave 29d5/2 → 28g transition vs
bias electric field in the z direction. The maximum frequency is
104 371.08(40) MHz at a bias voltage of Vb = V0 = 0.24 V. At this
bias, Ez is nulled.

of 6.68 MHz. Correcting for this assumed uncompensated
shift gives a zero-field 29d5/2-28g interval of 104 377.76
MHz. Assigning an uncertainty presents a problem, but an
uncertainty equal to the correction for E⊥, 6.7 MHz, does not
seem unreasonable, yielding 104 377.8(67) MHz as the final
result for the zero-field interval.

To take into account the fields in all directions we use
the approaches described in Sec. II. In the first approach we
implicitly determine ES from �νS , the separation of adjacent
Stark states. For each bias voltage we observe a Stark spectrum,
as shown in Fig. 4(a), and the d5/2 → g transition with a lower
microwave power in Fig. 4(b). The d5/2 → g transition also
appears in Fig. 4(a), but it is power broadened when the high-k
states are visible. The frequency separation �νS between
adjacent Stark states is proportional to ES . For each bias
voltage we obtain values of the d5/2 → g frequency νd5/2→g

and �νS , taken from the high-k states indicated in Fig. 4(a).
From these pairs of points we construct the parametric plot
of the d5/2 → g frequency vs �ν2

S . As shown in Fig. 5, the
result is a straight line, as expected from Eq. (2), and its
intercept is the zero field d5/2 → g interval. From Fig. 5, we
obtain the zero-field 29d5/2 → 28g transition frequency to be
104 378.9(62) MHz.

This approach has the attraction that we are measuring
frequencies, but it has the obvious problem that the fields
must be large enough to obtain good values for the separation
between the Stark states. The relatively large fields require a
long extrapolation, 40 MHz, to zero field and they introduce
the possibility that the Stark shift of the transition frequency
may not be adequately represented by Eq. (2). A variant of
this technique is to conduct the Stark spectroscopy at higher
n, where the separations are larger, allowing the use of smaller
fields. This approach has been used by Stevens and Lundeen
to monitor static fields [24].

To conduct measurements in lower static fields we use the
second approach described in Sec. II. Specifically, we measure
the signal amplitude S of the (n + 1)d5/2 → ng transition at
different bias voltages. Since we are driving the transition with
one microwave photon and a static field, for a fixed microwave
amplitude the Rabi frequency is proportional to the static field,
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(a)

(b)

FIG. 4. (a) The 29d5/2 → 28k Stark spectrum at a bias voltage of
Vb = −1.3 V at the relative microwave power 1. The high-k states are
indicated in the graph. (b) The 29d5/2 → 28g transition at the same
bias field as (a) but a relative microwave power of 0.032.

FIG. 5. The 29d5/2 → 28g transition frequency vs the square of
the Stark splitting of the high-k states �ν2

S obtained from Stark
spectroscopy. At �ν2

S = 0, the stray field is zero and the 29d5/2 →
28g transition frequency is 104 378.9(62) MHz.

(a)

(b)

FIG. 6. (a) Observed 29d5/2 → 28g resonance signals with dif-
ferent bias voltages. As shown by the slanted line, the signal amplitude
varies linearly with the observed resonance frequency. The resonance
frequency increases and the signal amplitude decreases as the bias
voltage is reduced from Vb = 0.61 V to 0.34 V, which reduces Ez

from 150 mV/cm to 41 mV/cm. (b) The 29d5/2 → 28g microwave
transition frequency as a function of the relative 28g signal amplitude.
From the graph, the 29d5/2 → 28g transition frequency at zero stray
field is 104 372.70(28) MHz.

as shown by Eq. (4). The experiment is conducted in the
low-transition-probability regime in which S is proportional
to E2

S . The procedure is similar to that used for the Stark
spectroscopy approach. For each bias voltage we observe the
d5/2 → g resonance, as shown in Fig. 6(a) for bias voltages
between 0.34 and 0.61 V. As shown by Fig. 6(a), the signal
amplitude S increases and the resonance frequency νd5/2→g

shifts with increasing bias voltage. Since S ∝ E2
S , a parametric

plot of νd5/2→g vs S yields a straight line, the intercept of which
is the zero-field d5/2 → g frequency as shown in Fig. 6(b).
From Fig. 6(b) the zero-field 29d5/2 → 28g frequency is
104 372.70(28) MHz. The extrapolation in this method is
∼ 4 MHz, which is much less than the aforementioned
approach, which results in a smaller uncertainty in determining
the the zero-field 29d5/2 → 28g frequency.

In Fig. 6 we have not explicitly used the bias voltages,
but from them we can extract the values of the perpendicular
stray field. When the observed frequencies are plotted vs the
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FIG. 7. Graph of the relative 28g signal amplitude S as a function
of squared voltage (Vb − V0)2 and squared static field E2

z in the z

direction of the system. Since S = a(E2
z + E2

⊥), from the intercept
and slope of the graph we determine E⊥ to be 91 mV/cm.

bias voltages Vb we obtain a parabola similar to Fig. 3, with
the maximum frequency of 104 369.87(44) MHz occurring at
Vb = V0 = 0.875 V. Since S is proportional to E2

S , we write

S = aE2
S = a

(
E2

z + E2
⊥
)
, (6)

where a is a constant. In Fig. 7 we plot S vs (Vb − V0)2, which
is in effect a plot of S vs E2

z , as shown by the horizontal scale
at the top of the figure. At the S intercept of the graph Ez = 0
and E2

S = E2
⊥. The slope a = dS/dE2

S ; combining these two
values from Fig. 7, we obtain E⊥ = 91 mV/cm. We can check
this value for E⊥ using a different approach. With Vb = 0 the
observed frequency is 104 326.05 MHz; Vb = V0 = 0.875 V,
so that Ez = 0 mV/cm, results in a shift of 43.82 MHz. To reach
the zero-field value requires a further shift of 2.83 MHz, which
implies that E⊥ = 90 mV/cm, in good agreement with the
value given above. It is instructive to apply the same method of
analysis to the data of Fig. 3, which leads to E⊥ = 68 mV/cm.
The data shown in Figs. 3 and 6 were taken with opposite
polarity field ionization pulses, which result in different bias
fields in the z direction. Nonetheless, the values for E⊥ are
similar. In addition, the values for E⊥ are smaller than the bias
field in the z direction due to the fact that the bias field in the
z direction is determined by an external circuit.

At this point it is useful to compare the three approaches
we have described. The first method, measuring transition
frequency as a function of bias voltage, allows the determina-
tion of the 29d5/2 → 28g frequency with high precision, but
the observed frequency is the zero-field 29d5/2-28g interval
altered by an unknown Stark shift due to the uncanceled stray
field E⊥. Estimating the Stark shift due to E⊥ by assuming
that the magnitudes of the stray field |Ex |, |Ey |, and |Ez|
are the same, we arrive at a zero-field 29d5/2-28g interval of
104 377.8(67) MHz. The second method, measuring transition
frequency as a function of separation of adjacent Stark states,
yields a 29d5/2 → 28g frequency transition of 104 378.9(62)
MHz. This method has the distinct advantage of actually
measuring |E⊥|, but it has the disadvantage of requiring a long

TABLE I. The (n + 1)d5/2 → ng microwave transition frequen-
cies in zero electric field and the extracted quantum defects of ng.

n Transition frequency (MHz) Quantum defect

27 116 464.54(35) 0.0039737(11)
28 104 372.70(28) 0.0039701(10)
29 93 895.75(34) 0.0039746(13)
30 84 775.26(65) 0.0039778(27)

extrapolation to zero field, which results in an uncertainty of
6.2 MHz, not really much better than the estimated uncertainty
of the first method. The third method, measuring transition
frequency as a function of the signal amplitude, yields a
29d5/2 → 28g frequency transition of 104 372.70(28) MHz.
The shorter extrapolation results in a smaller uncertainty,
0.28 MHz, of the the zero-field 29d5/2 → 28g frequency and
using this method we estimate E⊥ to be 91 mV/cm, slightly less
than our estimate of 137 mV/cm made on the basis of simply
measuring the frequency vs the bias voltage Vb. Comparing
the three methods shows that the third method, unlike the first
method, has a known uncertainty and it is a factor of 20 smaller
than the uncertainty of the second method. Consequently, we
use the third method to determine the zero-field intervals in the
sections that follow. Finally, we note that, although the stray
field varies from day to day, the zero field intervals extracted
remain constant, within their uncertainties.

B. The (n + 1)d5/2-ng intervals and ng quantum defects

While measuring signal strengths is less appealing than
measuring frequencies, as in the separation between the Stark
states, the much lower static fields make the signal amplitude
method more attractive and we have used it to measure the
(n + 1)d5/2 → ng transition frequencies for 27 � n � 30, as
shown in Table I. To find the quantum defects of the ng states,
we add the known quantum defects of the nd states from
Ref. [25] and the (n + 1)d5/2 → ng transition frequencies. The
values of the quantum defects of the ng states of 27 � n � 30
are shown in Table I. References [12,13,26] measured quantum
defects of the ng states to be 0.004 00(9), 0.004 05(6), and
0.004 02(8), respectively. References [12,13] did not consider
n dependence and Ref. [26] measured only the 30g quantum
defect. As seen from Table I, our values of the quantum defect
have improved upon the previous measurements by an order of
magnitude. Our quantum defects show a slight n dependence
and we fit them to a Ritz formula

δg = δ0 + δ1

(n − δ0)2
, (7)

which yields the values δ0 = 0.004 00(2) and δ1 =
−0.018(15).

C. The (n + 1)d5/2-nh intervals and nh quantum defects

We obtain the zero-field (n + 1)d5/2 → nh intervals in
much the same way as we obtained the (n + 1)d5/2 →
ng intervals. We drive the d5/2 → h transitions using one
microwave photon and a static field. The Rabi frequency �
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FIG. 8. Observed amplitude as the 29d5/2 → 28h resonance
changes in different bias voltages.

is given by

� = 〈d|μEmw|f 〉〈f |μEs |g〉〈g|μEs |h〉
(Wng − Wnf )(Wnh − Wng)

. (8)

In this case � ∝ E2
S and in the low-transition-probability

regime S ∝ E4
S . The experiment is conducted in much the same

way as the d5/2 → g measurements; for different bias voltages
the signal amplitude S and resonance frequency νd5/2→h are
measured while keeping the microwave field amplitude fixed.
Figure 8 shows the 29d5/2 → 28h transition as an example. A
parametric plot of νd5/2→h vs

√
S should give a straight line,

the intercept of which is the zero-field d5/2 − h interval, and
in Fig. 9 we present this plot for the 29d5/2 → 28h transition.
As shown, the plot matches our expectation and yields the
zero-field interval of 105 140.87(77) MHz. Following the same
procedure we have measured the (n + 1)d5/2 → nh intervals
for 28 � n � 30, with the results shown in Table II. In Table II
we also give the nh quantum defects, obtained in a manner
analogous to that used to obtain the ng quantum defects.

FIG. 9. Frequency of the observed 29d5/2 → 28h resonances as
a function of the square root of the relative 28h signal amplitude

√
S.

From the graph, the 29d5/2 → 28h transition frequency at zero field
is 105 140.87(77) MHz.

TABLE II. The (n + 1)d5/2 → nh microwave transition frequen-
cies in zero electric field and the extracted quantum defects of nh.

n Transition frequency (MHZ) Quantum defect

28 105 140.9(8) 0.0014078(27)
29 94 591.0(22) 0.0013982(82)
30 85 400.3(15) 0.0014137(62)

D. The Rb+ ionic dipole and quadrupole polarizabilities

We use the values of quantum defects that we have
determined and the adiabatic core polarization model of
Mayer and Mayer to extract the ionic dipole and quadrupole
polarizabilities of Rb+ [4]. For the high-� states, where � > 3,
the energy levels of the Rb atoms are depressed from the
hydrogenic levels only by core polarization; core penetration
is negligible. In Rb the Rydberg electron moves much more
slowly than the electrons in the core and the Rb+ core
is polarized by the slowly varying field from the Rydberg
electron. The polarization interaction between the Rydberg
electron and the ion core depresses the energy of the Rb n�

Rydberg state below the energy of a hydrogenic n� state by

Wpol,n� = −αd

2
〈1/r4

n�〉 − αq

2

〈
1/r6

n�

〉
, (9)

where αd and αq are the ionic dipole and quadrupole
polarizabilities. The expectation values 〈1/r4

n�〉 and 〈1/r6
n�〉 are

the squares of the field and the field gradient of the Rydberg
electron in the n� state at the core. The resulting energy of the
Rb n� state is given by

Wn� = −1/2n2 + Wpol,n�. (10)

The energy levels of the Rydberg n� state can also be expressed
as

Wn� = −1/2(n − δn�)2, (11)

FIG. 10. Plot of the measured ng and nh quantum defects scaled
by n3〈r−4

n� 〉/2 vs 〈r−6
n� 〉/〈r−4

n� 〉 using Eq. (14). There are three data
points for the nh quantum defects 28 � n � 30 and four data points
for the ng quantum defects 27 � n � 30. A fit to the straight line
yields the y intercept and slope, which are αd and αq , respectively.
The resulting fit values are αd = 9.12(2)a3

0 and αq = 14(3)a5
0 .
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TABLE III. The Rb+ dipole (αd ) and quadrupole (αq ) polariz-
abilities obtained from this work and other theoretical (Theor.) and
experimental (Expt.) results.

αd (a3
0 ) αq (a5

0 )

This work
9.12(2) 14(3)

Other works
8.9 < αd < 9.3 (Expt.) [12] 0 < αq < 43 (Expt.) [12]
8.5 < αd < 9.7 (Expt.) [13] 0 < αq < 55 (Expt.) [13]
8.98 (Expt.) [15] 35.4 (Theor.) [11]
9.1 (Theor.) [11] 38.37 (Theor.) [29]
9.11 (Theor.) [30] 35.41 (Theor.) [31]
9.076 (Theor.) [31]

where δn� is the quantum defect of the Rydberg n� state. Since
n is much larger than δn�, using a Taylor expansion we can
express the polarization energy as

Wpol,n� = 1/2n2 + Wn�
∼= −δn�

n3
. (12)

From Eqs. (9) and (12) we get

δn�

n3
= αd

2

〈
1/r4

n�

〉 + αq

2

〈
1/r6

n�

〉
. (13)

We can rewrite Eq. (13) as

2
δn�

n3
〈
1/r4

n�

〉 = αd + αq

〈
1/r6

n�

〉
〈
1/r4

n�

〉 . (14)

Equation (14) implies that a graph of 2δn�/(n3〈r−4
n� 〉) vs

〈r−6
n� 〉/〈r−4

n� 〉 is linear, with αd as the intercept and αq as the
slope of the graph. Here the values of δn� are the experimentally
determined values given above for 27 � n � 30, l = 4 and 5.
We use the known analytic expressions for 〈r−4

n� 〉 and 〈r−6
n� 〉 for

the n� states of hydrogen [27,28]. In Fig. 10 we plot the graph
of 2δn�/(n3〈r−4

n� 〉) vs 〈r−6
n� 〉/〈r−4

n� 〉 and we determine the ionic
dipole and quadrupole polarizabilities to be αd = 9.12(2)a3

0
and αq = 14(3)a5

0 , respectively. In Table III we compare the
Rb+ ionic dipole and quadrupole polarizabilities obtained from
our work to other theoretical and experimental work. Our
ionic dipole polarizability agrees with the earlier experimental
determinations, but has a much smaller uncertainty, and it
agrees very well with the theoretical predictions. References
[6,11] contain excellent summaries of the theory of ionic

polarizabilities. The experimental values for the ionic dipole
polarizability from Refs. [12,13,15] are determined from the
nf and ng energy levels using the core polarization model.
Although the nf states are core penetrating states that should
not be treated using the core polarization analysis alone, the
values obtained for αd are consistent with ours.

Our ionic quadrupole polarizability falls within the broad
limits set in Refs. [12,13] but is about a factor of 2 lower
than the theoretical prediction. In the latter connection it is
noteworthy that core polarization analyses of Rydberg quan-
tum defects of other elements have consistently yielded ionic
quadrupole polarizabilities that are lower than theoretically
predicted [16,32–35]. It is a worthy theoretical challenge to
pinpoint the source of the discrepancy between the theoretical
and experimental values. We believe that the core polarization
model needs to be reexamined closely.

V. CONCLUSION

We have presented an experimental technique to determine
zero-field transition frequencies in spite of our inability to
completely cancel the stray field. We use the technique
to measure the microwave transition frequencies from the
Rydberg (n + 1)d5/2 states to the Rydberg ng and nh states,
27 � n � 30. The ng and nh quantum defects of the measured
n states are determined from the observed microwave transition
frequencies. We extract the Rb+ dipole and quadrupole
polarizabilities from the values of quantum defects to be
αd = 9.12(2)a3

0 and αq = 14(3)a5
0 , respectively. The Rb+

dipole polarizability agrees well with recent theoretical values.
However, the Rb+ αq is about a factor of 2 lower than the
theoretical prediction. The discrepancy between theoretical
and experimental values is consistent with the determined αq

of other elements using the core polarization analysis. We hope
this work will motivate theoretical work to locate the source of
discrepancy between the experimental and theoretical values
of αq in the core polarization analysis.
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