Abstract (บทคัดย่อ)

Project Code: TRG5880192

(รหัสโครงการ) TRG5880192

Project Title: Development of nanostructured metal oxide and metal sulfide catalysts for deoxygenation of biomass derivatives to biofuels ้ (ชื่อโครงการ) การพัฒนาโลหะออกไซด์และซัลไฟด์ที่มีโครงสร้างนาโนสำหรับเป็นตัวเร่ง ปฏิกิริยาดีออกซีจิเหชันในอนุพันธ์ชีวมวลเพื่อการผลิตเชื้อเพลิงชีวภาพ

Investigator: Vorranutch Itthibenchapong, Ph.D. National Nanotechnology Center (ชื่อหักวิจัย) ดร. วรนุช อิทธิเบญจพงศ์ ศูนย์นาโนเทคโนโลยีแห่งชาติ

E-mail Address: vorranutch@nanotec.or.th

Project Period: 2 years (ระยะเวลาโครงการ) 2 ปี

Abstract The triglyceride-based feedstocks and biomass derivatives have been considered important resources for production of advanced biofuels, especially green renewable diesel and biojet fuels. Among the series of deoxygenation reactions, hydrodeoxygenation is a majority in the green diesel production when utilizing the group of metal sulfides catalysts, e.g. MoS₂ with various doping elements. Moreover, decarbonylation and decarboxylation are predominant over sulfur-free catalysts including noble metals, e.g., Pd and Pt, and non-precious transition metal, e.g., Ni. The research, development, and engineering of novel heterogeneous catalysts could be a key factor for commercialization and strong establishment of the biorefinery and biofuel industries. วัตถุดิบกลุ่มไทรกลีเซอร์ไรด์และอนุพันธ์ของชีวมวลถูกพิจารณาว่าเป็นทรัพยากรที่ สำคัญสำหรับการผลิตเชื้อเพลิงชีวภาพขั้นสูงโดยเฉพาะอย่างยิ่งกลุ่มเชื้อเพลิงดีเซลหมุนเวียน และเชื้อเพลิงอากาศยานชีวภาพ ในกลุ่มปฏิกิริยาดีออกซิจิเนชัน ปฏิกิริยาไฮโดรดีออกซิจิเนชัน เป็นปฏิกิริยาหลักในการผลิตเชื้อเพลิงดีเซลชีวภาพโดยใช้กลุ่มตัวเร่งปฏิกิริยาโลหะซัลไฟด์ เช่น โมลิบดินัมซัลไฟด์ (MoS₂) ร่วมกับธาตุชนิดอื่น นอกจากนี้ ในกลุ่มตัวเร่งปฏิกิริยาอื่นที่ปราศจาก ซัลเฟอร์ อาทิ โลหะหายากเช่น พัลลาเดียม (Pd) แพลทตินัม (Pt) และ โลหะทรานซิชัน เช่น นิกเคิล (Ni) จะมีความจำเพาะต่อกลุ่มปฏิกิริยาดีคาร์บอนิลเลชันและดีคาร์บอกซีเลชัน เป็นหลัก ในงานวิจัย พัฒนา และวิศวกรรม ของตัวเร่งปฏิกิริยาวิวิธพันธุ์กลุ่มใหม่จะเป็นปัจจัยสำคัญใน การนำไปใช้ประโยชน์เชิงพาณิชย์และสร้างรากฐานที่เข้มแข็งและมั่นคงของอุตสาหกรรมโรง กลั่นชีวภาพและเชื้อเพลิงชีวภาพ

Keywords : deoxygenation, biofuel, heterogeneous catalyst, diesel-like hydrocarbon, jet fuel-like hydrocarbon

(คำหลัก) ดีออกซิจิเนชัน, เชื้อเพลิงชีวภาพ, ตัวเร่งปฏิกิริยาวิวิธพันธุ์, ไฮโดรคาร์บอนที่มี องค์ประกอบคล้ายเชื้อเพลิงดีเซล, ไฮโดรคาร์บอนี่มีองค์ประกอบคล้ายเชื้อเพลิงอากาศยาน

Objectives

- To develop the nanostructured catalysts based on transition metal sulfide and metal oxide on supporting materials by simple and low cost synthesis techniques.
- 2. To utilize the developed catalysts for the efficient production of the synthetic diesel and jet fuel-liked hydrocarbons.

In this project, the 3 catalyst systems will be discussed separately as listed below.

- a) Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS $_2$ /V-Al $_2$ O $_3$ catalysts
- b) Deoxygenation of oleic acid under an inert atmosphere using molybdenum oxide-based catalysts
- c) Deoxygenation of Stearic acid into to diesel-range hydrocarbon using NiSn catalysts

Deoxygenation of palm kernel oil to jet fuel-like hydrocarbons using Ni-MoS₂/ γ -Al₂O₃ catalysts

1. Introduction

Biofuels, such as biodiesel, bioethanol, biogas, and bio-oil, have played an important role as renewable energy for transportation and power generation due to the depletion of fossil fuel [1-5]. Deoxygenation, which removes oxygenated components from the reactants in the presence of hydrogen gas through hydrodeoxygenation (HDO) and decarbonylation (DCO) and without hydrogen consumption via decarboxylation (DCO2), has been used in various applications including bio-hydrogenated diesel (BHD) or green diesel production [6-8] and biomass upgrading into valuable chemicals [9]. The