Abstract

Project Code: TRG5880193

Project Title: Computational Study of II-IV-N₂ semiconductor and their

optical properties

Investigator: Dr. Atchara Punya Jaroenjittichai, Chiang Mai University

E-mail Address: atcharapunya@gmail.com

Project Period: 2 years

In this work, the novel II-IV-N₂ semiconductors which are related to the wellknown III-N by replacing the group-III with a group-II and a group-IV were investigated. First, the lattice parameters of the II-IV-N₂ were predicted by a full potential linear muffin-tin orbital (FP-LMTO) approach within the generalized gradient approximation (GGA). The formation energies of the new materials and their competing compounds, such as Zn₃N₂, Mg₃N₂, Cd₃N₂ and Ge₃N₄ etc. were calculated from the constituent elements. The chemical potential diagrams for stability show the allowed ranges of the chemical potentials of elements. Next, the band structures of Mg-IV-N₂ with IV=Si, Ge, Sn were obtained by using the quasiparticle-self-consistent GW (QSGW) approach. Similar to the Zn-IV-N₂ compounds, MgSiN₂ is found to have an indirect gap slightly lower than the lowest direct gap, while the other materials have direct gaps. The direct gaps, calculated at the GGA lattice constant, range from 3.43 eV for MgSnN₂ to 5.14 eV for MgGeN₂ and 6.28 eV for MgSiN₂. The symmetry character of the valence-band maximum states and their splittings and effective masses were also determined. The conduction-band minima are found to have slightly higher Mg s- than Si s-like character in MgSiN₂ but in MgGeN₂ and MgSnN₂, the group-IV-s character becomes increasingly dominant. Finally, the phonon frequencies, phonon dispersions, Born effective charges, infrared (IR) absorption, and Raman spectra of MgSiN2 and MgGeN2 were calculated under the framework of a plane wave method implemented in Quantum - Espresso package. The Born effective charge calculation reveals that MgSiN₂ and MgGeN₂ have the same ionic nature compared with ZnSiN2 and ZnGeN2 semiconductor. The phonon frequencies which are IR and Raman active were firstly predicted.

Keywords: DFT, GW, psudopotential, II-IV-N₂ semiconductors, electronic structure

Abstract

รหัสโครงการ

ชื่อโครงการ: การศึกษาเชิงคณนาของสารกึ่งตัวนำ II-IV-N₂ และสมบัติเชิงแสง

ชื่อนักวิจัย: ดร. อัจฉรา ปัญญา เจริญจิตติชัย

ระยะเวลาโครงการ: 2 ปี

ในงานวิจัยนี้ได้ทำการศึกษาสารกึ่งตัวนำ II-IV-N₂ ชนิดใหม่ซึ่งสัมพันธ์กับสาร III-N ที่ เป็นที่รู้จักดี โดยการแทนที่ธาตุหมู่ III ด้วยธาตุหมู่ II และ IV โดยในขั้นแรกพารามิเตอร์แลต ทิตของ II-IV-N $_2$ ได้ถูกทำนายโดยวิธี full potential linear muffin-tin orbital (FP-LMTO) โดย อาศัยการประมาณแบบ generalized gradient (GGA) ในส่วนของการคำนวณหาพลังงานการ สร้างของสาร II-IV-N2 และสารคู่แข่ง ได้ as Zn_3N_2 , Mg_3N_2 , Cd_3N_2 and Ge_3N_4 นั้น ทำให้ได้มา ซึ่งแผนผังศักย์เคมีที่แสดงถึงเสถียรภาพของการเกิดสารในช่วงของศักย์เคมีของธาตุต่างๆ จากนั้นโครงสร้างแถบพลังงานของ Mg-IV-N₂ ที่มี IV=Si, Ge, Sn ได้ถูกคำนวณโดยใช้วิธี quasiparticle-self-consistent GW (QSGW) ซึ่งได้ผลคล้ายคลึงกับสารประกอบ Zn-IV-N₂, MgSiN₂ นั้นถูกพบว่ามีช่องว่างแถบพลังงานแบบไม่ตรงมีค่าน้อยกว่าช่องว่างแถบพลังงานแบบ ตรงเล็กน้อย ในขณะที่สารอื่นมีเพียงแค่ช่องว่างแถบพลังงานแบบตรง ซึ่งช่องว่างแถบพลังงาน แบบตรงที่คำนวณได้จากการใช้ค่าคงที่แลตทิต GGA คือ 3.43 eV สำหรับ MgSnN₂, 5.14 eV สำหรับ MgGeN₂ และ 6.28 eV สำหรับ MgSiN₂ นอกจากนี้ยังได้มีการคำนวณหาสมบัติความ สมมาตรและการแยกออกจากกันของสถานะที่แถบวาเลนซ์สูงสุดและมวลยังผลของสารดังกล่าว ในส่วนของแถบตัวนำต่ำสุดของ MgSiN₂ พบว่ามีสมบัติของออบิทอล Mg-s มากกว่าออบิทอล Si-s เล็กน้อย แต่ใน MgGeN₂ และ MgSnN₂ ออลิทอล IV-s มีผลเด่นเพิ่มขึ้น ในขั้นตอนสุดท้าย ได้มีการคำนวณหาความถี่โฟนอน การกระจายตัวของโฟนอน ประจุยังผลบอร์น สเป็กตรา IR Raman ของ MgSiN $_2$ และ MgGeN $_2$ โดยใช้วิธี plane wave จากซอฟ์ทแวร์ Quantum -Espresso ค่าประจุยังผลบอร์นเผยให้เห็นว่าความเป็นไออนของ MgSiN₂ และ MgGeN₂ สามารถเปรียบเทียบได้กับความเป็นไออนของ ZnSiN_2 และ ZnGeN_2 นอกจากนี้ยังได้ทำนาย ความถี่โฟนอนที่อยู่ในสภาวะกระตุ้น IR และ Raman

Keywords: DFT, GW, psudopotential, II-IV-N₂ semiconductors, electronic structure