

รายงานวิจัยฉบับสมบูรณ์

สารเมทาบอไลท์ทุติยภูมิที่แสดงฤทธิ์ทางชีวภาพจากราดิน Aspergillus unguis PSU-RSPG199 และ Trichoderma brevicompactum PSU-RSPG27

(Bioactive Secondary Metabolites from the Soil Fungi *Aspergillus unguis* PSU-RSPG199 and *Trichoderma brevicompactum* PSU-RSPG27)

โดย

ดร. ศรัณยู ใคลคลาย

รายงานวิจัยฉบับสมบูรณ์

สารเมทาบอไลท์ทุติยภูมิที่แสดงฤทธิ์ทางชีวภาพจากราดิน Aspergillus unguis PSU-RSPG199 และ Trichoderma brevicompactum PSU-RSPG27

(Bioactive Secondary Metabolites from the Soil Fungi *Aspergillus unguis* PSU-RSPG199 and *Trichoderma brevicompactum* PSU-RSPG27)

โดย

ดร. ศรัณยู ใคลคลาย

สหับสนุนโดยสำหักงานกองทุนสหับสนุนการวิจัยและ มหาวิทยาลัยสงขลานครินทร์ รหัสโครงการ: TRG5880202

ชื่อโครงการ: สารเมทาบอไลท์ทุติยภูมิที่แสดงฤทธิ์ทางชีวภาพจากราดิน Aspergillus unguis

PSU-RSPG199 และ Trichoderma brevicompactum PSU-RSPG27

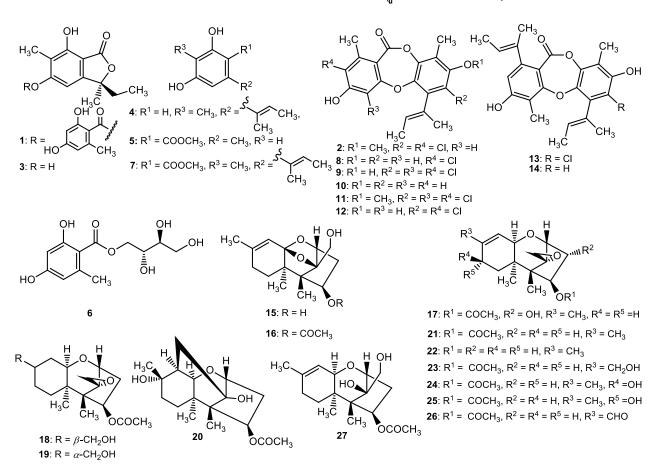
(Bioactive secondary metabolites from the soil fungi Aspergillus unguis

PSU-RSPG199 and Trichoderma brevicompactum PSU-RSPG27)

ชื่อนักวิจัย: ดร. ศรัณยู ใคลคลาย

สถาบัน: มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตสุราษฎร์ธานี

E-mail Address: saranyoo.k@psu.ac.th


ระยะเวลาโครงการ: 2 ปี (1 เดือนกรกฎาคม พ.ศ. 2558 ถึงวันที่ 30 เดือนมิถุนายน พ.ศ. 2560)

คำสำคัญ: Aspergillus unguis Trichoderma brevicompactum ต้านเชื้อจุลินทรีย์ ต้านเชื้อมาลาเรีย

ต้านเซลล์มะเร็ง

บทคัดย่อ

งานวิจัยนี้ศึกษาเมทาบอไลท์ที่แสดงฤทธิ์ทางชีวภาพจากเชื้อราดิน Aspergillus unguis PSU-RSPG199 และ Trichoderma brevicompactum PSU-RSPG27 แยกส่วนสกัดหยาบด้วยเทคนิคทาง โครมาโทกราฟีแบบต่าง ๆ ได้สารบริสุทธิ์ทั้งหมด 27 สาร โดยเป็นสารใหม่จำนวน 8 สาร (1-2 และ 15-20) และสารที่มีการรายงานโครงสร้างแล้วจำนวน 19 สาร วิเคราะห์โครงสร้างของสารบริสุทธิ์ด้วยข้อมูล ทางสเปกโทรสโกปี emeguisin A (13) จากเชื้อรา A. unguis PSU-RSPG199 แสดงฤทธิ์ต้านเชื้อ Staphylococcus aureus มาตรฐานและที่ดื้อต่อยาเมทิซิลิน และต้านเชื้อรา Cryptococcus neoformans ในระดับที่ดีด้วยค่า MIC ที่เท่ากันที่ 0.5 µg/mL pilobolusate (7) จากเชื้อราชนิดเดียวกัน แสดงฤทธิ์ต้านเซลล์มะเร็งช่องปาก (KB cell line) ในระดับที่ดีด้วยค่า IC₅₀ 4.5 µM โดยที่ไม่แสดงความเป็นพิษต่อ เซลล์ไตของลิง (Vero cell line) นอกจากนี้ trichodermin (21) จากเชื้อรา T. brevicompactum PSU-RSPG27 แสดงฤทธิ์ต้านเชื้อมาลาเรีย (Plasmodium falciparum) ในระดับที่ดีด้วยค่า IC₅₀ 0.1 µM แต่ อย่างไรก็ตามสาร 21 มีความเป็นพิษต่อเซลล์ไตของลิงในระดับที่สูงด้วยค่า IC₅₀ 0.4 µM

คำสำคัญ: Aspergillus unguis Trichoderma brevicompactum ต้านเชื้อจุลินทรีย์ ต้านเชื้อมาลาเรีย ต้านเซลล์มะเร็ง

Abstract

This research project involved investigation of bioactive secondary metabolites from the soil fungi. Aspergillus unguis PSU-RSPG199 and Trichoderma brevicompactum PSU-RSPG27. Purification of the crude extracts by various chromatographic techniques led to the isolation of twenty-seven compounds including eight new compounds (1-2 and 15-20) as well as nineteen known ones. Their structures were elucidated by spectroscopic methods. Emeguisin A (13) isolated from the soil fungus A. unguis PSU-RSPG199 displayed strong antibacterial activity against Staphylococcus aureus and methicillin-resistant strain and antifungal activity against Cryptococcus neoformans with equal MIC values of 0.5 μg/mL. Pilobolusate (7) derived from the same strain exhibited a potent anticancer activity against KB-oral cell lines with an IC₅₀ value of 4.5 μM, but were noncytotoxic against noncancerous (Vero) cell lines. Moreover, trichodermin (21) exhibited significant antimalarial activity against Plasmodium falciparum with the IC₅₀ value of 0.1 μM. However, 21 showed strong cytotoxic activity against Vero cell lines with the IC₅₀ value of 0.4 μM.

Keywords: Aspergillus unguis, Trichoderma brevicompactum, Antimicrobial, Antimalarial, Cytotoxicity

Executive Summary

This research project involved investigation of bioactive secondary metabolites from the soil fungi Aspergillus unguis PSU-RSPG199 and Trichoderma brevicompactum PSU-RSPG27 isolated from a soil sample collected from the Plant Genetic Conservation Project under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn at Ratchaprapa Dam in Surat Thani Province, Thailand. Their culture broth and mycelia from small scale cultivation were extracted with organic solvents. The crude extracts displayed interesting antibacterial, antifungal, antimalarial, anticancer and cytotoxic activities. Accordingly, the extracts from large scale fermentation was prepared and then purified using various chromatographic techniques. The structures of pure compounds were identified using spectroscopic methods including UV, IR, NMR and MS. The isolated compounds were tested for antibacterial, antifungal, antimalarial, anticancer and cytotoxic activities.

Two new compounds including one phthalide (1) and one depsidone (2) together with twelve known compounds (3-14) were isolated from *A. unguis* PSU-RSPG199. Known emeguisin A (13) exhibited potent antibacterial activity against *Staphylococcus aureus* and methicillin-resistant *S. aureus* as well as strong antifungal activity against *Cryptococcus neoformans* with equal MIC values of 0.5 μg/mL. In addition, known pilobolusate (7) was strongly active against human oral carcinoma (KB) cell lines with an IC₅₀ value of 4.5 μM. Interestingly, they were noncytotoxic against noncancerous (Vero) cell lines.

Six new trichothecene analogues (15-19) together with seven known trichothecene derivatives (20-27) were isolated from *T. brevicompactum* PSU-RSPG27. Trichodermin (21) exhibited the most potent antimalarial activity against *Plasmodium falciparum* with an IC₅₀ value of 0.1 μ M while other trichothecenes (15, 18, 22-23 and 26) showed the antimalarial activity with the IC₅₀ values in the range of 7.1-9.6 μ M. However, these compounds (15, 21-23 and 26) displayed strong cytotoxicity against Vero cells the IC₅₀ values in the range of 0.1-15.3 μ M.

Research Project

Project title: Bioactive secondary metabolites from the soil fungi *Aspergillus unguis* PSU-RSPG199 and *Trichoderma brevicompactum* PSU-RSPG27

Objectives

- To isolate secondary metabolites from two soil fungi, *A. unguis* PSU-RSPG199 and *T. brevicompactum* PSU-RSPG27.
 - To identify the structures of isolated compounds using spectroscopic data.
- To evaluate for antibacterial, antifungal, anticancer and antimalarial activities of the isolated compounds.

Scope of research

Isolation of secondary metabolites from *A. unguis* PSU-RSPG199 and *T. brevicompactum* PSU-RSPG27, structural determination of isolated compounds and evaluation for their antibacterial, antifungal, anticancer and antimalarial activities.

Methodology

- 1. Fermentation
- The fungi PSU-RSPG199 and PSU-RSPG27 were grown on potato dextrose agar at 25 °C for 5 days. Five pieces (0.5 x 0.5 cm²) of mycelial agar plugs were inoculated into 54 flasks of 500 mL Erlenmeyer flasks containing 300 mL of potato dextrose broth and kept at room temperature for 3 weeks.
 - 2. Extraction and purification
 - The cultures were filtered to give filtrate and mycelia.
- The filtrate was extracted with ethyl acetate. The ethyl acetate extract was dried over anhydrous NaSO₄, filtered and evaporated to dryness under reduced pressure to afford a broth extract.
- The mycelial cake was extracted with methanol. The methanol extract was concentrated under reduced pressure. Water was added to the extract and the mixture was washed with hexane to give the aqueous and hexane layers. The hexane layer was dried and evaporated to dryness to afford the mycelial hexane extract. The aqueous residue was extracted with ethyl acetate. The ethyl acetate layer was then dried over anhydrous Na₂SO₄ and evaporated to dryness to obtain the mycelial ethyl acetate extract.

- Each crude extract was fractionated by column chromatography over Sephadex LH-20. The selected fractions were further purified by various chromatographic techniques to afford pure compounds.

3. Structure determination

The structures of pure compounds were identified by spectroscopic evidences, including UV, IR, NMR and mass spectroscopy and/or x-ray diffraction. The absolute configurations of isolated compounds were determined by comparison of optical rotations and/or CD data with those of related compounds as well as the modified Mosher method.

4. Bioassays

- The crude extracts was tested for antibacterial (*Staphylococcus aureus* and methicillin-resistance *S. aureus*), antifungal (*Canida albicans* and *Cryptococus neoformans*), anticancer (oral human carcinoma cells (KB) and human breast cancer cells (MCF-7)), cytotoxic (Vero cell) and antimalarial (against *Plasmodium falciparum*) activities.
- The isolated compounds with sufficient amount were tested for antibacterial, antifungal, anticancer, cytotoxic and antimalarial activities.
- The antibacterial and antifungal activities were performed by Assoc. Prof. Souwalak Phongpaichit, Department of Microbiology, Faculty of Science, Prince of Songkla University while other bioassays were carried out at the National Center for Genetic Engineering and Biotechnology (BIOTEC).

4.1 Antimicrobial activity (Phongpaichit et al., 2006)

Antibacterial activity against *S. aureus* ATCC25923 and methicillin-resistant *S. aureus* SK1 (a clinical isolate) was performed using a colorimetric broth microdilution test. Vancomycin is used as a positive control.

Antifungal activity against *C. albicans* NCPF3153 and *C. neoformans* ATCC90113 was carried out using a colorimetric broth microdilution test. MICs were recorded by reading the lowest substance concentration that inhibits visible growth. Amphotericin B was a positive control drug.

4.2 Anticancer and cytotoxic activities

Cytotoxic assays against Vero cells were performed employing the colorimetric method (Hunt et al., 1999), while the activities against human oral cavity (KB) and human breast (MCF-7) cancer cell lines were carried out using the resazurin microplate assay (O'Brien et al., 2000).

The standard compound for Vero and KB cell lines was ellipticine while those for MCF-7 cell lines were tamoxifen and doxorubicin.

4.3 Antimalarial activity

Antimalarial activity was performed in vitro against the parasite *Plasmodium falciparum* (K1, multidrug resistant strain) using the microculture radioisotope technique (Desjardins et al., 1979). The standard compound was dihydroartemisinine.

Results and Discussions

Fungi soil fungi *A. unguis* PSU-RSPG199 and *T. brevicompactum* PSU-RSPG27 were isolated from soil samples collected from the Plant Genetic Conservation Project area under the Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn (RSPG area) at Ratchaprapa Dam in Surat Thani Province in 2010. The crude extracts from these fungi showed interesting biological activities as shown in **Table 1**.

Table 1. The biological activities of the crude extracts from *A. unguis* PSU-RSPG199 and *T. brevicompactum* PSU-RSPG27

Fungi/	Courds	An	timicrobi	al activ	ity ²	Antimalarial ³		Cytoto	Kic ⁴
standard	Crude extracts ¹		(MIC, µ	lg/mL)		(IC ₅₀ , μ g/mL)		(IC ₅₀ , μg	/mL)
drugs	extracts	SA	MRSA	CA	CN	P. falciparum	KB	MCF-7	Vero cell
PSU-	BE	32	32	200	32	8.46	Inactive	Inactive	Inactive
RSPG199	CE	8	8	64	8	Inactive	36.50	Inactive	19.15
	CH	16	16	>200	128	Inactive	30.78	Inactive	45.99
PSU-	BE	32	128	4	16	0.21	1.14	21.57	0.30
RSPG27	CE	32	64	64	8	2.73	3.06	22.01	7.25
	СН	200	>200	2	8	0.06	1.04	Inactive	0.21
Vancomycin		0.5	0.5						
Amphotericii	n B			0.25	0.06				
Dihydroarter	nisinine					2.32^{5}			
Ellipticine							1.18 ⁶		0.73^{6}
Tamoxifen								9.53^{6}	

 $^{^{1}}$ BE = Broth extract, CE = Mycelial ethyl acetate extract, CH = Mycelial hexane extract

²SA = Staphylococcus aureus ATCC25923, MRSA = methicillin-resistant S. aureus, CA = Candida albicans NCPF3153, CN = Cryptococcus neoformans ATCC90113 flucytosine-resistant

³Antimalarial activity against parasite *Plasmodium falciparum* (K1, multidrug resistant strain)

⁴Cytotoxicity against African green monkey kidney fibroblasts (Vero) cell lines, KB = Oral human carcinoma cell lines, MCF-7 = Human breast cancer cell lines ⁵nM, ⁶μM

Aspergillus unguis PSU-RSPG199

The isolation and characterization of secondary metabolites from the broth and mycelial extracts of the fungus PSU-RSPG199 were described in Appendix I. One new phthalide (asperlide, 1) together with four known compounds, 3-ethyl-5,7-dihydroxy-3,6-dimethylphthalide (3) (Kawahara et al., 1988), aspergillusphenol A (4) (Sureram et al., 2012), methyl orsellinate (5) (Lopes et al., 2008) and (+)-montagnetol (6) (Basset et al., 2010), were isolated from the broth extract. Moreover, one new depsidone (aspersidone, 2), one known orsellinate, pilobolusate (7) (Rajachan et al., 2014), and seven known depsidones, including 3-chlorounguinol (8) (Kawahara et al., 1988), nornidulin (9) (Kawahara et al., 1988), unguinol (10) (Kawahara et al., 1988), nidulin (11) (Kawahara et al., 1988), aspergillusidone C (12) (Sureram et al., 2013), emeguisin A (13) (Kawahara et al., 1988) and folipastatin (14) (Hamano et al., 1992), were obtained from the mycelial extract (Figure 1).

Figure 1. Structures of compounds 1-14 isolated from Aspergillus unguis PSU-RSPG199

The isolated compounds (3, 5, 7-9 and 12-14) with sufficient amount were evaluated for antimicrobial (against *S. aureus*, methicillin-resistant *S. aureus*, *C. albicans*, *C. neoformans* and *M. gypseum*), antimalarial (against *P. falciparum*) and cytotoxic (against MCF-7, KB and Vero cells) activities (Table 2).

Table 2 Biological activities for compounds 3, 5, 7-9 and 12-14

Compounds/	Α	ntimicrob	, μg/mL	.)	Antimalarial IC ₅₀ (μΜ)	Cytotoxicity IC ₅₀ (μΜ)			
Standard drugs	SA	MRSA	CA	CN	MG	P. falciparum	KB	MCF-7	Vero
3	2	4	128	32	8	15.6	51.5	62.6	40.0
5	IN^2	IN^2	IN^2	IN^2	IN^2	IN^2	IN^2	IN^2	IN^2
7	64	64	200	64	64	39.7	4.5	128.5	76.9
8	4	8	8	32	8	IN^2	IN^2	IN^2	85.7
9	2	2	IN^2	8	IN^2	IN^2	IN^2	IN^2	110.1
12	2	1	200	128	2	6.3	15.8	27.9	8.1
13	0.5	0.5	IN^2	0.5	IN^2	2.2	14.4	60.0	37.7
14	2	1	IN^2	1	IN^2	7.7	47.2	33.7	45.4
Vancomycin	0.25	0.25							
Amphotericin B			0.5	0.25					
Miconazole					1				
Dihydroartemisini									
ne						2.23			
Ellipticine							8.2		4.1
Tamoxifen								18.4	

¹SA = Staphylococcus aureus ATCC25923, MRSA = methicillin-resistant S. aureus, CA = Candida albicans NCPF3153,

Compound 5 was inactive in all tested assays. Interestingly, compound 13 exhibited the most potent antibacterial (against *S. aureus* and methicillin-resistant *S. aureus*) and antifungal (against *C. neoformans*) activities with equal MIC values of 0.5 μg/mL. In addition, compounds 12 and 14 showed two folds more active against methicillin-resistant *S. aureus* than *S. aureus* with equal MIC values of 1 μg/mL. In contrast, compounds 3 and 8 exhibited two folds more active against *S. aureus* than methicillin-resistant strain with MIC values of 2 and 4 μg/mL, respectively. Compounds 7 and 9 displayed activity against both bacterial stains with equal MIC values of 64 and 2 μg/mL, respectively. For antifungal activity, compound 8 was active against *C. albicans* with a MIC value of 8 μg/mL while other tested substances were much less active. Compound 14 showed significant antifungal activity against *C. neoformans* with MIC value of 1 μg/mL while compounds 3, 7, 8 and 9 displayed moderate to weak activity with MIC values in the range of 8-128 μg/mL. Compound 12 exhibited antifungal activity toward *M. gypseum* with a MIC value of 2 μg/mL. In addition, compounds 3 and 8 showed eight folds more active against the same fungal pathogen than compound 7 with equal MIC values of 8 μg/mL. Compound 13

CN = Cryptococcus neoformans ATCC90113 flucytosine-resistant and MG = Microsporum gypseum clinical isolate

²IN = Inactive, ³nM

was approximately three folds more active against P. falciparum than 12 with an IC₅₀ value of 2.2 μ M. Moreover, compounds 3, 7 and 14 displayed the same activity with IC₅₀ values in the range of 7.7-39.7 μ M. Among the tested compounds, compound 7 exhibited the most potent activity against KB cells with an IC₅₀ value of 4.5 μ M which was much stronger than the standard drug, ellipticine. Compound 12 showed the strongest activity against Vero cells with an IC₅₀ value of 8.1 μ M. Other tested compounds except for compounds 8 and 9 which were inactive against KB and MCF-7 cells were much less active toward all cells with the IC₅₀ values in the range of 14.4-110.1 μ M. These results implied that the chlorine atom in the depsidone was important for antimicrobial activity. Furthermore, this is the first report on the antibacterial activity against *S. aureus* and methicillin-resistant *S. aureus* of compounds 3, 7-8 and 13-14 as well as antifungal and antimalarial activities for all tested substances.

Trichoderma brevicompactum PSU-RSPG27

The isolation and characterization of secondary metabolites from the broth extract of the fungus PSU-RSPG27 were described in Appendix II. Six new trichothecene derivatives, trichodermarins A-F (16-20), together with seven known ones, trichodermin (21) (Ayer and Miao, 1993), trichodermin (22) (Ayer and Miao, 1993), trichoderminol (23) (Lee et al., 2016), (2R,2'S,4R,5S,5aR,7R,9aR)-2,3,4,5,5a,6,7,9a-octahydro-5,5a,8-trimethyl-4-acetate-spiro[2,5-methano-1-benzo-xepin-10,2'-oxirane]-4,7-diol (24), (2R,2'S,4R,5S,5aR,7S,9aR)-4-acetate-2,3,4,5,5a,6,7,9a-octahydro-5,5a,8-trimethyl-spiro[2,5-methano-1-benzo-xepin-10,2'-oxi-rane]-4,7-diol (25) (Xu et al., 2013), (4β)-4-(acetyloxy)-12,13-epoxy-trichothec-9-ene-9-carboxaldehyde (26) (Xu et al., 2013) and (2R,4R,5S,5aR,9aR,10S)-4-acetate-2,3,4,5,5a,6,7,9a-octahydro-10-(hydroxylmethyl)-5,5a,8-trime-thyl-2,5-methano-1-benzo-xepin-4,10-diol (27) (Cheng et al., 2010), were obtained from the broth extract of the fungus (**Figure 2**).

Figure 2. Structures of compounds **16-27** isolated from *Trichoderma brevicompactum* PSU-RSPG27.

The mycelial extract of this fungus was not investigated because its ¹H NMR spectrum showed trichodermin (21) as a major component.

The isolated compounds **15**, **18**, **21-23** and **26**, which were obtained in sufficient amounts, were tested for antifungal (*C. albicans*, *C. neoformans* and *M. gypseum*), antimalarial (*P. falciparum*) and cytotoxic (KB and Vero cell lines) activities (**Table 3**).

Table 3 Biological activities for compounds 15, 18, 21-23 and 26

Compounds/Standard	Antifungal ¹ (MIC, μg/mL)			Antimalarial	Cytotoxicity IC _{so} (μΜ)	
				IC ₅₀ (μΜ)		
drugs	CA	CN	MG	P. falciparum	КВ	Vero
15	16	16	IN ²	7.4	44.7	15.3
18	IN^2	IN^2	IN^2	IN^2	116.2	45.9
21	1	4	2	0.1	2.4	0.4
22	16	16	IN^2	7.1	16.1	6.9
23	64	64	IN^2	8.8	20.6	7.8
26	2	4	IN^2	9.6	3.7	9.9
Amphotericin B	0.5	0.25				
Miconazole			1			
Dihydroartemisinine				2.2 ³		
Ellipticine					8.2	4.1

¹CA = Candida albicans NCPF3153, CN = Cryptococcus neoformans ATCC90113 flucytosine-resistant and MG = Microsporum gypseum clinical isolate. ²IN = Inactive. ³nM.

Interestingly, 21 exhibited the most potent antifungal activity against C. albicans, C. neoformans and M. gypseum with the MIC values of 1, 4 and 2 μg/mL, respectively. Compound 26 was two fold more active against C. albicans than C. neoformans with the MIC values of 2 and 4 µg/mL, respectively. Compounds 15 and 22 showed much weaker antifungal activity against C. albicans and C. neoformans with equal MIC values of 16 µg/mL while compound 23 was four fold less active against these two fungal strains. Among the tested compounds, 21 displayed the most potent antimalarial activity against P. falciparum (K1 strain) with an IC₅₀ value of 0.1 μM. In addition, the other trichothecenes was less active with the IC₅₀ values in the range of 7.1-9.6 μM. Compounds 21 and 26 showed significant cytotoxicity against KB cell lines with the IC₅₀ values of 2.4 and 3.7 μM, respectively, which were much stronger than standard drug, ellipticine. Moreover, compounds 22 and 23 were approximately four and five folds less active against the same cell lines than 26, respectively. However, 21 exhibited much stronger cytotoxic activity (IC₅₀ value of 0.4) to Vero cell lines than other tested compounds. These results indicated that the 4-OAc and vinylic methyl functionalities would be important for antifungal, antimalarial and cytotoxic (against KB and Vero cell lines) activities. From these data, we conclude that the biological activities of broth extract might be controlled by 21, which is the major component in the extract.

References

- Ayer, W.A., Miao, S. 1993. Secondary metabolites of the aspen fungus *Stachybotrys cylindrospora*. *Can. J. Chem.* 71, 487–493.
- Basset, J.-F., Leslie, C., Hamprecht, D., White, A.J.P., Barrett, A.G.M. 2010. Studies on the resorcylates: biomimetic total syntheses of (+)-montagnetol and (+)-erythrin. *Tetrahedron Lett.* 51, 783–785.
- Cheng, J.L., Zhou, Y., Zhao, J.H., Zhang, C., Lin, F.C. 2010. Synthesis and antifungal activity of trichodermin derivatives. *Chin. Chem. Lett.* 21, 1037–1040.
- Desjardins, R.E., Canfield, C.J., Haynes, J.D., Chulay, J.D. 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. *Antimicrob. Agents Chemother.* 16, 710–718.
- Hamano, K., Kinoshita-Okami, M., Hemmi, A., Sato, A., Hisamoto, M., Matsuda, K., Yoda, K., Haruyama, H., Hosoya, T., Tanzawa, K. 1992. Folipastatin, a new depsidone compound from Aspergillus unguis as an inhibitor of phospholipase A2. Taxonomy, fermentation, isolation, structure determination and biological properties. *J. Antibiot.* 45, 1195–1201.
- Hunt, L., Jordan, M., De Jesus, M., Wurm, F.M. 1999. GFP-expressing mammalian cells for fast, sensitive, noninvasive cell growth assessment in a kinetic mode. *Biotechnol. Bioeng.* 65, 201–205.
- Kawahara, N., Nozawa, K., Nakajima, S., Kawai, K., Yamazaki, M. 1988. Isolation and structures of novel fungal depsidones, emeguisins A, B, and C, from *Emericella unguis*. *J. Chem. Soc.* 2611–2614.
- Lee, D.H., Kim, J.J., Ryu, K.H., Kim, B.S., Ryu, S.M. 2016. Novel antiviral composition, and method for controlling plant viruses by using same. PCT Patent WO 2016/089166 A1.
- Lopes, T.I.B., Coelho, R.G., Yoshida, N.C., Honda, N.K. 2008. Radical scavenging activity of orsellinates. *Chem. Pharm. Bull.* 56, 1551–1554.
- O'Brien, J., Wilson, I., Orton, T., Pognan, F. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity: resazurin as a cytotoxicity assay. *Eur. J. Biochem.* 267, 5421–5426.
- Phongpaichit, S., Rungjindamai, N., Rukachaisirikul, V., Sakayaroj, J. 2006. Antimicrobial activity in cultures of endophytic fungi isolated from *Garcinia* species. *FEMS Immunol. Med. Microbiol.* 48, 367–372.
- Rajachan, O., Kanokmedhakul, S., Kanokmedhakul, K., Soytong, K. 2014. Bioactive depsidones from the fungus *Pilobolus heterosporus*. *Planta Med.* 80, 1635–1640.

- Sureram, S., Kesornpun, C., Mahidol, C., Ruchirawat, S., Kittakoop, P. 2013. Directed biosynthesis through biohalogenation of secondary metabolites of the marine-derived fungus *Aspergillus unguis*. *RSC Adv.* 3, 1781–1788.
- Sureram, S., Wiyakrutta, S., Ngamrojanavanich, N., Mahidol, C., Ruchirawat, S., Kittakoop, P. 2012. Depsidones, aromatase inhibitors and radical scavenging agents from the marine-derived fungus *Aspergillus unguis* CRI282-03. *Planta Med.* 78, 582–588.
- Xu, X., Cheng, J., Zhou, Y., Zhang, C., Ou, X., Su, W., Zhao, J., Zhu, G. 2013. Synthesis and antifungal activities of trichodermin derivatives as fungicides on rice. *Chem. Biodivers*. 10, 600–611.

Out put ที่ได้จากโครงการ

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

ได้รับการตีพิมพ์ในวารสารนานาชาติ ในฐานข้อมูล ISI จำนวน 1 เรื่อง

- ผู้ แต่ง Saranyoo Klaiklay, Vatcharin Rukachaisirikul, Weerawat Aungphao, Souwalak Phongpaichit, Jariya Sakayaroj
- ชื่อเรื่อง Depsidone and phthalide derivatives from the soil-derived fungus Aspergillus unguis PSU-RSPG199

แหล่งพิมพ์ Tetrahedron Letters (IF 2.379, Quartile in Category: Q2) ปีที่พิมพ์ 2016 เล่มที่ 57 หน้า 4348-4351

2. ผลงานที่อยู่ในระหว่างเตรียม manuscript จำนวน 1 เรื่อง

ชื่อเรื่อง Trichothecene derivatives from the soil-derived fungus *Trichoderma* brevicompactum PSU-RSPG27

การนำผลงานวิจัยไปใช้ประโยชน์

ด้านวิชาการ

จากการศึกษาสารเมทาบอไลท์ที่แสดงฤทธิ์ทางชีวภาพจากเชื้อราดินทั้ง 2 สายพันธุ์ ทำให้ทราบ ว่าเชื้อราเหล่านี้สร้างสารหลากหลายชนิดที่น่าสนใจ และสารบริสุทธิ์ที่แยกได้นั้นแสดงฤทธิ์ต้านเชื้อ แบคทีเรีย เชื้อรา เชื้อมาลาเรีย และต้านเซลล์มะเร็ง ซึ่งจะนำไปสู่การนำสารที่ได้ไปใช้ในเชิงเภสัชวิทยา หรือนำมาเป็นความรู้พื้นฐานในการวิจัยด้านนี้ต่อไป

ภาคผนวก ก

(Appendix I)

ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

Tetrahedron Letters 57 (2016) 4348-4351

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Depsidone and phthalide derivatives from the soil-derived fungus Aspergillus unguis PSU-RSPG199

Saranyoo Klaiklay ^{a,*}, Vatcharin Rukachaisirikul ^b, Weerawat Aungphao ^b, Souwalak Phongpaichit ^c, Jariya Sakayaroj

- ^a Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84100, Thailand ^b Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand ^c Natural Products Research Center of Excellence and Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand ^c National Center for Genetic Engineering and Biotechnology (BiOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand

ARTICLE INFO

Article history Received 16 July 2016 Revised 5 August 2016 Accepted 12 August 2016 Available online 16 August 2016

Keywords: Aspergillus unguis Phthalide Depsidone Antibacterial Antifungal Cytotoxic

ABSTRACT

Two new compounds including one phthalide (asperlide, 1) and one depsidone (aspersidone, 2) together with twelve known compounds were isolated from the soil-derived fungus Aspergillus unguis PSU-RSPG199. Known emeguisin A exhibited potent antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus as well as strong antifungal activity against Cryptococcus neoformans, each with MIC values of 0.5 µg/mL. Additionally, known pilobolusate was strongly active against the human oral carcinoma (KB) cell line with an IC_{50} value of 4.5 μ M. Interestingly, emeguisin A and pilobolusate were noncytotoxic against noncancerous (Vero) cell lines.

© 2016 Elsevier Ltd. All rights reserved.

Fungi are a significant source of structurally diverse metabolites, many of which are excellent sources of pharmaceuticals such as cancer drugs.1 The soil fungi in the genus Aspergillus has afforded interesting bioactive compounds such as antiviral merosesquiterpenoids,2 cholesterol lowering lovastatins,3 and cytotoxic phenalenone.4 In our ongoing search for bioactive secondary metabolites from soil fungi, Aspergillus unguis PSU-RSPG199 was isolated from a soil sample collected from the Plant Genetic Conservation Project under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn at Ratchaprapa Dam in Surat Thani Province, Thailand. The broth extract exhibited antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus, each with minimum inhibitory concentration (MIC) values of 32 µg/mL, while the mycelial extract displayed antibacterial activity against both bacterial stains with MIC values of 8 µg/mL. Both extracts showed weak antifungal activity against Candida albicans, Cryptococcus neoformans, and Microsporum gypseum with MIC values in the range of 64–200 $\mu g/mL$. Additionally, the broth extract showed antimalarial activity against *Plasmodium falciparum* (K1 strain) with an IC₅₀ value of 8.46 µg/mL, while the mycelial extract was inactive. Regarding the cytotoxic activity against

MCF-7 breast cancer, KB oral cavity cancer and noncancerous Vero (African green monkey kidney fibroblasts) cell lines, only the mycelial extract exhibited cytotoxicity toward KB and Vero cell lines with IC50 values of 36.6 and 19.15 µg/mL, respectively. Herein, we describe the isolation and characterization of secondary metabolites from the broth and mycelial extracts of the fungus PSU-RSPG199. One new phthalide, asperlide (1) together with four known compounds, 3-ethyl-5,7-dihydroxy-3,6-dimethylphthalide (3),5 aspergillusphenol A (4),6 methyl orsellinate (5)7 and (+)-montagnetol (6),8 were isolated from the broth extract. Moreover, one new depsidone, aspersidone (2), one known orsellinate, pilobolusate (7),⁹ and seven known depsidones, 3-chlorounguinol (8),⁵ nornidulin (9),⁵ unguinol (10),⁵ nidulin (11),⁵ aspergillusidone C (12),¹⁰ emeguisin A (13),¹¹ and folipastatin (14)¹² were obtained from the mycelial extract. Some of the isolated compounds were evaluated for antimicrobial (against S. aureus ATCC25923, methicillin-resistant S. aureus, C. albicans NCPF3153, C. neoformans ATCC90113 flucytosine-resistant, and M. gypseum clinical isolate), antimalarial (against P. falciparum), anticancer (against MCF-7 and KB cell lines), and cytotoxic (against Vero cell line) activities.

All compounds (1-14, Fig. 1) were obtained using chromatographic purification, and their structures elucidated using various spectroscopic techniques (ESI). The absolute configuration of compound 3 was assigned for the first time as 3S by the opposite sign of

^{*} Corresponding author, Tel.: +66 7735 5040x8603; fax: +66 7735 5041. E-mail address: saranyoo.k@psu.ac.th (S. Klaiklay).

Figure 1. Structures of compounds 1-14 isolated from Aspergillus unguis PSU-RSPG199.

Table 1

Position	$\delta_{H}^{\ a}J$ in Hz	δ_{C} , type	НМВС	NOEDIFF
1		171.3, C		
3 3a		90.2, C		
3a		151.6, C		
4	6.62, s	106.7, CH	C-3, C-5, C-6, C-7a	H ₃ -9, H _{ab} -10, H ₃ -11, H ₃ -8
5		155.2, C		
5 6 7		118.4, C		
7		155.7, C		
7-OH	8.14, s		C-6, C-7, C-7a	
7a		108.9, C		
8	2.14, s	8.9, CH ₃	C-5, C-6, C-7	H ₃ -8'
8 9	1.65, s	25.5, CH ₃	C-3, C-3a, C-10	H-4, H _{ab} -10, H ₃ -11
10	a: 2.04, dq (14.4, 7.2)	32.9, CH ₂	C-3, C-3a, C-11	
	b: 1.91, dq (14.4, 7.2)	14-C10-24-24-2-2-1-1-1		
11	0.84, t (7.2)	7.9, CH ₃	C-3, C-10	H-4, H ₃ -9, H _{ab} -10,
1'		166.6, C		
1'-OH	11.30, s		C-1', C-2', C-6'	
2'	6.35, s	101.7, CH	C-1', C-3', C-4', C-6', C-7'	1'-OH
2' 3'		161.6, C		
4'	6.35, s	112.1, CH	C-2', C-3', C-6', C-7', C-8'	H ₃ -8'
		144.4, C		
5' 6' 7'		104.3, C		
7'		169.5, C		
8'	2.66, s	24.7, CH ₃	C-4', C-5', C-6'	H-4, H ₃ -8, H-4'

a Recorded at 300 MHz in CDCl₃.
 b Recorded at 75 MHz in CDCl₃.

both the CD data ($\Delta\epsilon$ +12.51 at 211 nm) and specific rotation ([α | $_D^{25}$ -48.9, c 0.078, MeOH) to those of (3R)-pseudaboydin B ($\Delta\epsilon$ -7.22 at 211.2 and [α] $_D^{25}$ +53.6, c 0.078, MeOH). The absolute configuration of compound 6 was established by comparison of its specific rotation with that reported in the literature.8

Asperlide (1) 14 was isolated as a colorless gum with the molecular formula $\rm C_{20}H_{20}O_{7}$ as identified from the HRESIMS peak at m/z 395.1108 [M+Na] * . It showed UV absorption bands of a conjugated carbonyl chromophore at 270 and 300 nm.5 The IR spectrum showed characteristic absorption bands of hydroxy, γ -lactone carbonyl, and ester carbonyl groups at 3424, 1757, and 1726 cm⁻¹, respectively.^{5,9} The ¹H NMR spectroscopic data (Table 1) were similar to those of compound 3.⁵ The differences in their ¹H NMR spectroscopic data were the presence of signals for a hydrogen bonded hydroxy proton ($\delta_{\rm H}$ 11.30), two aromatic protons of a 1,2,3,5-tetra substituted benzene ring ($\delta_{\rm H}$ 6.35, s), and one methyl

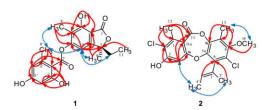


Figure 2. Selected HMBC () and NOEDIFF data () for compounds 1 and 2. group ($\delta_{\rm H}$ 2.66, s). The $^{13}{\rm C}$ NMR data contained additional signals for an ester carbonyl ($\delta_{\rm C}$ 169.5) as well as four quaternary ($\delta_{\rm C}$ 166.6, 161.6, 144.4 and 104.3), two methine ($\delta_{\rm C}$ 112.1 and 101.7), and one methyl (δ_{C} 24.7) carbons. The hydrogen bonded

4349

Table 2 NMR data of aspersidone 2

Position	δ_{H} , In Hz	δ_{C} , type	НМВС	NOEDIFF
1		141.6, C		
2		115.6, C		
3		155.1, C		
3-OH	6.12, br s			
4	6.61, s	105.8, CH	C-2, C-3, C-4a, C-11, C-11a	H ₃ -3', H ₃ -4
4a		161.5, C		
5a		144.6, C		
6		135.7, C		
7		123.8, C		
8		152.1, C		
9		123.3, C		
9a		142.0, C		
11		162.0, C		
11a		119.2, C		
12	2.54, s	18.6, CH₃	C-1, C-2, C-4a, C-11, C-11a	_
13	2.31, s	10.3, CH ₃	C-8, C-9, C-9a	H ₃ -14
14	3.78, s	60.5, CH ₃	C-8	H ₃ -13
1'		129.3, C		
2'	5.38, qq (6.5, 1.0)	127.1, CH	C-6, C-3', C-4'	H-4, H ₃ -4'
3'	1.96, brs	17.2, CH ₃	C-6, C-1', C-2'	H ₃ -4'
4'	1.89, dq (6.5, 0.5)	13.7, CH ₃	C-1', C-2'	H-4, H-2'

a Recorded at 500 MHz in CDCl₂

Table 3 Biological activities for compounds 3, 5, 7-9, and 12-14

Compounds		Antimic	robial ^a (MIC, _I	ıg/mL)		Antimalarial IC_{50} (μ M)	Cytotoxicity IC ₅₀ (µM)		
	SA	MRSA	CA	CN	MG	P. falciparum	KB	MCF-7	Vero
3	2	4	128	32	8	15.6	51.5	62.6	40.0
5	INb	INb	INb	INb	INb	IN ^b	INb	IN^b	IN^b
7	64	64	200	64	64	39.7	4.5	128.5	76.9
8	4	8	8	32	8	IN ^b	INb	INb	85.7
9	2	2	INb	8	IN ^b	IN ^b	IN ^b	IN ^b	110.
12	2	1	200	128	2	6.3	15.8	27.9	8.1
13	0.5	0.5	INb	0.5	INb	2.2	14.4	60.0	37.7
14	2	1	INb	1	INb	7.7	47.2	33.7	45.4
Vancomycin	0.25	0.25							
Amphotericin B			0.5	0.25					
Miconazole					1				
Dihydroartemisinin						2.2°			
Ellipticine							8.2		4.1
Tamoxifen								18.4	

a SA = Staphylococcus aureus ATCC25923, MRSA = methicillin-resistant S. aureus, CA = Candida albicans NCPF3153, CN = Cryptococcus neoformans ATCC90113 flucytosineresistant and MG = Microsporum gypseum clinical isolate.

b IN = Inactive.

hydroxy proton (δ_{H} 11.30) was located at C-1' (δ_{C} 166.6), in a hydroxy proton (δ_H 11.50) was necessary and showed HMBC correlations (Fig. 2) with C-1', C-2' (δ_C 101.7), and C-6' (δ_C 104.3). The aromatic proton resonance at δ_H 6.35 was assigned as H-2' on the basis of an HMQC correlation with C-2' and showed HMBC correlations with C-1', C-3' (δ_C 161.6), C-4' (δ_C 112.1), C-6' and C-7' (δ_{C} 169.5). Thus, the other aromatic proton (δ_{H} 6.35) was attributed to H-4'. The substituent at C-3' was a hydroxy group on the basis of its chemical shift. The methyl group resonating at $\delta_{\rm H}$ 2.66 gave HMBC correlations with C-4′, C-5′ ($\delta_{\rm C}$ 144.4), and C-6', indicating the attachment of the methyl group at C-5'. Thus, the orsellinate unit with two hydroxy groups at C-1' and C-3' and the methyl group at C-5' was established. The C-5 position of the phthalide moiety was connected to the orsellinate unit via an ester linkage on the basis of the molecular formula $C_{20}H_{20}O_7$. Signal enhancement of H-4 ($\delta_{\rm H}$ 6.62) and H₃-8 ($\delta_{\rm H}$ 2.14) after irradiation of H₃-8' ($\delta_{\rm H}$ 2.66) in the NOEDIFF experiment (Fig. 2) supported the position of the ester moiety. Compound 1 showed similar CD data ($\Delta\epsilon$ +28.21 at 211 nm) and specific rotation ([α] $_{D}^{25}$ –48.7, c0.078, MeOH) to those of co-metabolite 3. Thus, the absolute

configuration at C-3 was proposed as an S-configuration, identical to that in 3.

Aspersidone $(2)^{15}$ was obtained as a pale yellow gum with the molecular formula $C_{20}H_{18}O_5CI_2$ as determined from the HRESIMS peak at m/z 431.0429 [M+Na] $^+$. The UV and IR spectra were almost identical to those of compound 12.10 Their ¹H and ¹³C NMR spectroscopic data (Table 2) as well as HMBC correlations were also similar. 10 However, 2 had additional signals of an methoxy group $(\delta_{\rm H}$ 3.78, s; $\delta_{\rm C}$ 60.5). The attachment of a methoxy group at C-8 was assigned on the basis of HMBC correlations (Fig. 2) from the methoxy protons (δ_H 3.78) to C-8 (δ_C 152.1) and the methyl protons $(\delta_{H}\ 2.31,\ H_{3}\text{-}13)$ to C-8, C-9 $(\delta_{C}\ 123.3)$ and C-9a $(\delta_{C}\ 142.0)$. Signal enhancement of the methoxy protons after irradiation of H₃-13 in the NOEDIFF experiment supported this assignment. The HRESIMS $\,$ (m/z 431.0429, 433.0414 and 435.0386 in a 10:6:1 ratio) revealed the presence of two chlorine atoms in 2. Consequently, compound 2 was identified as a methoxy derivative of compound 12.

The isolated compounds (3, 5, 7-9, and 12-14) with sufficient amount were evaluated for antimicrobial (against S. aureus, methicillin-resistant S. aureus, C. albicans, C. neoformans, and

Recorded at 125 MHz in CDCl₃.

c nM.

M. gypseum), antimalarial (against P. falciparum), and cytotoxic (against MCF-7, KB and Vero cell lines) activities (Table 3). Compound 5 was inactive in all tested assays, Interestingly, compound 13 exhibited the most potent antibacterial (against S. aureus and methicillin-resistant S. aureus), and antifungal (against C. neoformans) activities with MIC values of 0.5 µg/mL. Additionally, compounds 12 and 14 were two fold more active against methicillin-resistant S. aureus than S. aureus with MIC values of 1 μg/mL. In contrast, compounds 3 and 8 were two fold more active against S. aureus than the methicillin-resistant strain with MIC values of 2 and 4 µg/mL, respectively. Compounds 7 and 9 displayed activity against both bacterial stains with MIC values of 64 and 2 $\mu g/mL$, respectively. Regarding the antifungal activity, compound 8 was active against C. albicans with a MIC value of 8 μg/mL, while other tested substances were much less active. Compound 14 showed significant antifungal activity against C. neoformans with a MIC value of 1 µg/mL, while compounds 3, and 7-9 displayed moderate to weak activity with MIC values in the range of $8-128\,\mu\text{g/mL}$. Compound 12 exhibited antifungal activity toward M. gypseum with a MIC value of 2 µg/mL. Furthermore, compounds 3 and 8 were eight fold more active against the same fungal pathogen than compound 7 with MIC values of 8 µg/mL. Compound 13 was approximately three fold more active against P. falciparum than 12 with an IC50 value of 2.2 µM. Moreover, compounds 3, 7, and 14 displayed the same activity with IC_{50} values in the range of 7.7-39.7 μM . Among the tested compounds, compound 7 exhibited the most potent activity against KB cell line with an IC_{50} value of 4.5 μ M which was much stronger than the standard drug, ellipticine. Compound 12 showed the strongest activity against Vero cell line with an IC50 value of $8.1~\mu\text{M}.$ Other tested compounds, except for compounds $\boldsymbol{8}$ and $\boldsymbol{9}$ which were inactive against KB and MCF-7 cell lines, were much less active with IC50 values in the range of 14.4-110.1 μ M. These results implied that the chlorine atom in the depsidone was important for antimicrobial activity. Furthermore, this is the first report on the antibacterial activity against S. aureus and methicillin-resistant S. aureus of compounds 3, 7-8, and 13-14 as well as antifungal and antimalarial activities for all tested substances. The antibacterial activity of the depsidones 9 and 12 against methicillin-resistant S. aureus has been previously reported.

In conclusion, A. unguis PSU-RSPG199 produced two phthalides (1 and 3), three orsellinates (4, 5 and 7), one benzoate (6), and eight depsidones (2 and 8-14). The isolated depsidones 8-9 and 12-14 showed significant antibacterial activity with MIC values in the range of 0.5-8 µg/mL. Furthermore, orsellinate 7 displayed potent cytotoxic activity against the KB cell line with an IC50 value of 4.5 µM. All compounds except 12 were considered to be inactive against Vero cell lines.

Acknowledgements

S.K. thanks the Thailand Research Fund (Grant No. TRG5880202) and Prince of Songkla University, Surat Thani Campus. V.R. is grateful to the NSTDA Chair Professor grant (the Fourth Grant) of the Crown Property Bureau Foundation and the National Science and Technology Development Agency. Finally, the National Center for Genetic Engineering and Biotechnology (BIOTEC) is acknowledged for antimalarial, anticancer, and cytotoxic assays.

Supplementary data

Supplementary data (experimental procedure) associated with this article can be found, in the online version, at http://dx.doi. org/10.1016/j.tetlet.2016.08.040.

References and notes

- Kornienko, A.; Evidente, A.; Vurro, M.; Mathieu, V.; Cimmino, A.; Evidente, M.; van Otterlo, W. A. L.; Dasari, R.; Lefranc, F.; Kiss, R. Med. Res. Rev. 2015, 35, 937-
- 2. Wang, J.; Wei, X.; Qin, X.; Tian, X.; Liao, L.; Li, K.; Zhou, X.; Yang, X.; Wang, F.;
- wang, J.; Wei, X.; Qin, X.; Irai, A.; Liaol, J.; Li, K.; Zhou, X.; Yang, X.; Wang, F.; Zhang, T.; Tu, Z.; Chen, B.; Liu, Y. J. Nat. Prod. 2016, 79, 59–65.
 Phainuphong, P.; Rukachaisirikul, V.; Saithong, S.; Phongpaichit, S.; Bowornwiriyapan, K.; Muanprasat, C.; Srimaroeng, C.; Duangjai, A.; Sakayaroj, J. J. Nat. Prod. 2016, 79, 1500–1507.
 Rukachaisirikul, V.; Rungsaiwattana, N.; Klaliklay, S.; Phongpaichit, S.; Borwornwiriyapan, K.; Sakayaroj, J. J. Nat. Prod. 2014, 77, 2375–2382.
 Kawahara, N.; Nakajima, S.; Satoh, Y.; Yamazaki, M.; Kawai, K.-l. Chem. Pharm. Pull. 1989, 26, 1070–1075.

- Kawahara, N.; Nakajima, S.; Satoh, Y.; Yamazaki, M.; Kawai, K.-l. Chem. Pharm. Bull. 1988, 36, 1970–1975.
 Sureram, S.; Kesornpun, C.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. RSC Adv. 2013, 3, 1781–1788.
 Lopes, T. I. B.; Coelho, R. G.; Yoshida, N. C.; Honda, N. K. Chem. Pharm. Bull. 2008, 56, 1551–1554.
 Basset, J.-F.; Leslie, C.; Hamprecht, D.; White, A. J. P.; Barrett, A. G. M. Tetrahedron Lett. 2010, 51, 783–785.
 Rajachan, O.; Kanokmedhakul, S.; Kanokmedhakul, K.; Soytong, K. Planta Med. 2014, 80, 1635–1640.
 Sureram, S.; Wiyakrutta, S.; Ngamrojanavanich, N.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Planta Med. 2012, 78, 582–588.
 Kawahara, N.; Nozawa, K.; Nakajima, S.; Kawai, K.; Yamazaki, M. J. Chem. Soc. 1988, 2611–2614.

- 1988, 2611-2614,
- 12 Hamano K : Kinoshita-Okami M : Hemmi A : Sato A : Hisamoto M : Matsuda ; Yoda, K.; Haruyama, H.; Hosoya, T.; Tanzawa, K. J. Antibiot. **1992**, 45, 1195-
- K.; Yoda, K.; Haruyama, H.; Hosoya, T.; Tanzawa, K. J. Athunut. 1201.

 13. Lan, W.-J.; Liu, W.; Liang, W.-L.; Xu, Z.; Le, X.; Xu, J.; Lam, C.-K.; Yang, D.-P.; Li, H.-J.; Wang, L.-Y. Mar. Drugs 2014. 12, 4188–4199.

 14. Aspertide (1): Colorless gum; |2|₀²⁵-48.7 (c 0.078 MeOH); UV (MeOH) λ̄_{max} (λοε) 211 (128.21) nm; IR (neat) ν̄_{max} 3424, 1757, 1726 cm⁻¹; 'H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) data, see Table 1; HRESIMS m/z 395.1108 [M +Na]' (calcd for C₂₀H₂₀O₇Na, 395.1107).

 15. Aspersidone (2): Pale yellow gum; UV (MeOH) λ̄_{max} (loge) 321 (3.43), 287 (3.58), 223 (4.33) mr; IR (neat) ν̄_{max} 340, 1736 cm⁻¹; 'H NMR (CDCl₃, 500 MHz) am); IR (mat) ν̄_{max} 3410, 1736 cm⁻¹; 'H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) data, see Table 2; HRESIMS m/z 431.0429 [M+Na]' (calcd for C₂₀H₁₈O₅Cl₂Na, 431.0429).

 16. Zhang, Y.; Mu, J.; Feng, Y.; Wen, L.; Han, J. Nat. Prod. Res. 2014, 28, 503–506.

ภาคผนวก ข

(Appendix II)

ผลงานที่อยู่ในระหว่างเตรียม manuscript

Trichothecene Derivatives from the Soil-Derived Fungus *Trichoderma brevicompactum* PSU-RSPG27

Saranyoo Klaiklay, $^{\dagger *}$ Vatcharin Rukachaisirikul ‡ , Saowanit Saithong ‡ , Souwalak Phongpaichit § , and Jariya Sakayaroj $^{\perp}$

[†]Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand

[‡]Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

§Natural Products Research Center of Excellence and Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

¹National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand

*Corresponding author. Tel.: 66 7735 5040 ext: 8603; Fax. 66 77355041

E-mail address: saranyoo.k@psu.ac.th (S. Klaiklay)

ABSTRACT. Six new trichothecene analogues (1-6) together with seven known trichothecene

derivatives (7-13) were isolated from the soil-derived fungus Trichoderma brevicompactum

PSU-RSPG27. Their structures were established using spectroscopic data. The structure of 1 was

confirmed by X-ray data. Trichodermin (7) exhibited the most potent antimalarial activity

against Plasmodium falciparum (K1 strain) with an IC50 value of 0.1 µM while other

trichothecenes (1, 4, 8-9 and 12) were much less active with the IC₅₀ values in the range of 7.1-

9.6 µM. However, compound 7 displayed strong activity against noncancerous Vero cells with

an IC₅₀ value of 0.4 µM. The remaining compounds showed moderate to weak activity with the

IC₅₀ values in the range of 6.9-45.9 μM. Compounds 7 and 8 were strongly active against the

human oral carcinoma (KB) cells with the IC₅₀ values of 2.4 and 3.7 μM, respectively.

Additionally, compounds 7 and 8 also displayed antifungal activity against Candida albicans

with the respective MIC values of 1 and 2 µg/mL and were active against Cryptococcus

neoformans with equal MIC values of 4 µg/mL.

KEYWORDS

Trichoderma brevicompactum

Trichothecence

Antifungal

Antimalarial

Cytotoxic

Fungi have gained predominance as a source of interesting bioactive natural products. 1,2 Trichothecenes, a family of sesquiterpenes, were produced by various fungal genera such as Fusarium, Myrothecium and Trichoderma. Trichodermin, one of trichothecence derivatives, displayed antifungal,⁶ nematicidal⁷ and antiviral⁸ activities. Moreover, trichodermin derivatives such as trichodermates, trichothecin and trichodermol, exhibited cytotoxic activity against K562 human myelogenous leukemia,9 HCT15 colon cancer 10 and SMMC-7721 human carcinoma cell lines.⁴ In our ongoing search for biologically active substances from the soil-derived fungi, we chemically investigated a soil-derived fungus Trichoderma brevicompactum PSU-RSPG27 isolated from a soil sample collected from the Plant Genetic Conservation Project under the Royal Initiation of Her Royal Highness Princess Maha Chakri Sirindhorn at Ratchaprapa Dam in Surat Thani Province, Thailand. The broth extract showed antifungal activity against Candida albicans, Cryptococcus neoformans and Microsporum gypseum with the MIC values of 4, 16 and 128 µg/mL, respectively. It exhibited interesting antimalarial activity against *Plasmodium* falciparum (K1 strain) with an IC₅₀ value of 0.21 µg/mL. In addition, it displayed significant cytotoxicity against KB (oral cavity cancer) and noncancerous Vero (African green monkey kidney fibroblasts) cells with the IC₅₀ values of 1.14 and 0.30 μg/mL, respectively. Herein, we describe the isolation and characterization of secondary metabolites from the broth extract of the fungus PSU-RSPG27. Six new trichothecene derivatives, trichodermarins A-F (1-6) together with seven known ones, trichodermin (7), 11 trichodermol (8), 11 trichoderminol (9), 8 (2R,2'S,4R,5 S,5aR,7R,9aR)-2,3,4,5,5a,6,7,9a-octahydro-5,5a,8-trimethyl-4-acetatespiro[2,5-methano-1-benzoxepin-10,2'-oxirane]-4,7-diol (10),12,13 (2R,2'S,4R,5S,5aR,7S,9aR)-4-acetate-2,3,4,5,5a, 6,7,9a-(11), 12,13 octahydro-5,5a,8-trimethylspiro[2,5-methano-1-benzoxepin-10,2'-oxirane]-4,7-diol (4β) -4-(acetyloxy)-12,13-epoxytrichothec-9-ene-9-carboxaldehyde (12)¹² and (2R,4R,5S,5aR,

9a*R*,10*S*)-4-acetate-2,3,4,5,5a,6,7,9a-octahydro-10-(hydroxymethyl)-5,5a,8-trime-thyl-2,5-me-thano-1-benzoxepin-4,10-diol¹⁴ (**13**) were obtained. Antifungal (against *C. albicans*, *C. neoformans* and *M. gypseum*), antimalarial (against *P. falciparum*) and cytotoxic (against KB and Vero cells) activities of isolated compounds were evaluated.

RESULTS AND DISCUSSION

All trichothecene derivatives (1-13) (Figure 1) were purified using chromatographic methods, and their structures were elucidated using various spectroscopic techniques. The relative configuration of 1 was determined by NOEDIFF data and confirmed by X-ray data (Figure 2). The absolute configuration of the secondary alcohol at C-4 of 1 was established to be *R* configuration by Mosher's method (Figure 3). For the other isolated compounds, the relative configurations were also assigned according to NOEDIFF data. Consequently, the absolute configurations were confirmed by comparison of their specific rotations with those of known or structurally related compounds.

Trichodermarin A (1) was obtained as colorless crystals with the molecular formula $C_{15}H_{22}O_4$ deduced from HRESIMS peak at m/z 289.1416 [M+Na]⁺. The IR spectrum showed an absorption band at 3343 cm⁻¹ for a hydroxy group. The ¹H NMR spectroscopic data (Table 1) consist of signals for one olefinic proton of a pentasubstituted alkene (δ_H 5.40, s, 1H), two oxymethine protons (δ_H 4.08, brd, J = 6.9 Hz, 1H and 4.20, d, J = 5.4 Hz, 1H), two nonequivalent oxymethylene protons (δ_H 3.99 and 3.93, each d, J = 10.5 Hz, 1H), three sets of nonequivalent methylene protons [δ_H 2.56 (dd, J = 16.5 and 7.5 Hz, 1H)/1.71 (m, 1H), 2.15 (m, 1H)/1.96 (m, 1H) and 1.85 (ddd, J = 12.9, 5.2 and 1.2 Hz)/1.43 (ddd, J = 12.9, 4.2 and 1.2, 1H)] and three methyl groups (δ_H 1.76, 1.05 and 0.89, each s, 3H). The ¹³C NMR spectrum (Table 2) consisted

of signals for five quaternary ($\delta_{\rm C}$ 145.6, 107.9, 94.7, 54.5 and 47.8), one oxymethylene ($\delta_{\rm C}$ 59.5), three methylene ($\delta_{\rm C}$ 42.0, 30.7 and 28.9), three methine ($\delta_{\rm C}$, 116.2, 82.7 and 75.6) and three methyl ($\delta_{\rm C}$ 23.0, 14.4 and 10.6) carbons. These data were similar to those of **8**. 12 The obvious differences were the replacement of the oxymethine (C-11) and the oxymethylene (C-13) carbons of the epoxide unit in 8 with one dioxygenated quaternary carbon ($\delta_{\rm C}$ 107.9, C-11) and hydroxymethylene carbon ($\delta_{\rm C}$ 59.5, C-13) in 1, respectively. This assignment was confirmed by HMBC correlations of H-2 ($\delta_{\rm H}$ 4.20) to C-11, C-12 ($\delta_{\rm C}$ 94.7) and C-13 and those of H_{ab}-13 ($\delta_{\rm H}$ 3.99 and 3.93) with C-2 ($\delta_{\rm C}$ 82.7), C-5 ($\delta_{\rm C}$ 47.8) and C-12. The chemical shifts of C-11 and C-12 together with five degrees of unsaturation established an ether linkage between C-11 and C-12 and the attachment of the hydroxymenthyl group at C-12.15 In the NOEDIFF experiment (Figure 4), the signal intensity of H₃-15 ($\delta_{\rm H}$ 1.05) was affected by irradiation of H-4, suggesting that they were cis-relationship. In addition, irradiation of H_{ab} -13 (δ_H 3.93 and 3.99) enhanced signal intensities of H-2 ($\delta_{\rm H}$ 4.20) and H₃-14 ($\delta_{\rm H}$ 0.89) indicating that theses protons located at the same side of molecule and had trans relationship to H-4 and H₃-15. These assignments were confirmed by X-ray data (Figure 2). The absolute configuration of the secondary alcohol at C-4 of 1 was assigned as R configuration by Mosher's method (Figure 3), dentical to that of 8. Thus, the remaining absolute configurations were identified as 2R, 5S, 6R, 11R and 12R. Consequently, 1 was a new trichothecence derivative.

Trichodermarin B (2) was obtained as a colorless gum with the molecular formula $C_{17}H_{24}O_5$ deduced from HRESIMS peak at m/z 331.1535 [M+Na]⁺. The IR spectrum showed an absorption band at 1737 cm⁻¹ for a carbonyl functionality of an acetoxy group.¹¹ The ¹H and ¹³C NMR spectroscopic data were almost identical to 1 except for the present of additional signals of acetyl group [δ_H 2.06, s, 3H, δ_C 170.0 (a carbonyl carbon), and δ_C 21.3 (a methyl carbon)] in 2. These

results together with the appearance of the oxymethine proton (H-4, $\delta_{\rm H}$ 5.29) in 2 at much lower filed than that in 1, indicated that the hydroxy group in 1 was replaced by the acetoxy group in 2. An HMBC correction from H-4 to C-1' ($\delta_{\rm C}$ 170.0) confirmed this conclusion. Compound 2 displayed similar NOEDIFF data to those of 1, indicating their identical relative configuration. The absolute configuration was proposed to be identical to that of 1 according to their similar specific rotation (2, $[\alpha]_{\rm D}^{23}$ +10.1, c 1.1, CH₂Cl₂ and 1, $[\alpha]_{\rm D}^{23}$ +12.7, c 1.1, CH₂Cl₂). Thus, 2 was assigned as an acetyl derivative of 1.

Trichodermarin C (3) was obtained as a colorless gum with the molecular formula $C_{17}H_{24}O_5$ deduced from HRESIMS peak at m/z 331.1518 [M+Na]⁺. The IR spectrum showed absorption bands at 3432 and 1733 cm⁻¹ for hydroxy and carbonyl functionalities, respectively. The ¹H NMR spectroscopic data were similar to those of 7 except that one set of the methylene protons in 7 was replaced, in 3, by an oxymethine proton (δ_H 4.19, dd, J = 5.0 and 3.0 Hz). The oxymethine proton was attributed to H-3 on the basis of the ¹H-¹H COSY correlations of H-3 with H-2 (δ_H 3.70, d, J = 5.0 Hz) and H-4 (δ_H 5.00, d, J = 3.0 Hz). The relative configuration was assigned by the NOEDIFF data. Irradiation of H-3 affected signal intensity of H-2, but not that of H-4, indicating β position of H-3. Determination of the absolute configuration at C-3 was not attempted because compound 3 was isolated in low amount. As compound 3 was a co-metabolite of 1, 2, 7 and 8, their absolute configurations were assigned as 2R, 4R, 5R, 11R and 12R. Thus, the absolute configuration of C-3 was identified as 3S. 3 was assigned as a 2-hydroxy derivative of 7.

Trichodermarin D (4) was obtained as a colorless gum with the molecular formula $C_{17}H_{26}O_5$ deduced from HRESIMS peak at m/z 333.1668 [M+Na]⁺. The IR spectrum displayed absorption bands at 3420 and 1730 cm⁻¹ for hydroxy and carbonyl functionalities, respectively. Comparison

of the ¹H and ¹³C NMR spectral data of 4 (Table 1 and 2) with those of 7 reveal the similarity of their structures. The significant difference was the replacement of signals for a -CH=C(CH₃)unit in 7 with signals for a -CH₂CH(CH₂OH)- moiety [δ_H 1.85, m, 1H, δ_C 32.7; δ_H 1.97 and 1.73, each m, 1H, $\delta_{\rm C}$ 28.5; $\delta_{\rm H}$ 3.66 and 3.65, each dd, J = 8.5 and 2.5 Hz, 1H, $\delta_{\rm C}$ 66.8] in 4. The $^{\rm 1}$ H- $^{\rm 1}$ H COSY spectrum displayed the cross peaks of H-9 ($\delta_{\rm H}$ 1.85)/H_{ab}-8 ($\delta_{\rm H}$ 1.68 and 1.62), H_{ab}-10 ($\delta_{\rm H}$ 1.97 and 1.73) and H_{ab} -16 (δ_H 3.66 and 3.65), H_{ab} -8/ H_{ab} -7 (δ_H 2.03 and 1.20) and H_{ab} -10/H-11 $(\delta_{\rm H} 3.48)$. These data together with HMBC cross peaks from H_{ab}-16 to C-8 ($\delta_{\rm C}$ 22.8), C-9 ($\delta_{\rm C}$ 32.7), C-10 (δc 28.5) and H-9 to C-7 (δc 24.2) and C-11 (δc 71.8) constructed a fused cyclohexane ring with the hydroxymethylene group at C-9. The relative configuration was assigned by NOEDIFF data (Figure 4). Irradiation of H-11 ($\delta_{\rm H}$ 3.48) enhanced signals of H-9 and H_3 -15 (δ_H 1.05), indicating that they were in a *cis*-relationship. In addition, irradiation of H_a -13 $(\delta_{\rm H} 3.13)$ and $H_{\rm ab}$ -16 affected to $H_{\rm a}$ -10 ($\delta_{\rm H} 1.97$). Thus, the hydroxylmethyl group was located in a β position. The absolute configurations at C-2, C-4, C-5 and C-6 were proposed to be identical to that of compounds 1, 2, 7 and 8, as they were co-metabolites. Thus, the absolute configuration of C-9 was identified as 9R. Consequently, compound 4 was a new trichothecence.

Trichodermarin E (5) was obtained as a colorless gum with the same molecular formula as 4 based on HRESIMS peak at m/z 333.1678 [M+Na]⁺. The ¹H and ¹³C NMR spectroscopic data (Table 1 and 2) were similar to those of 4. These results together with their ¹H-¹H COSY and HMBC correlations indicated that 5 possessed an identical planar structure to 4. However, 4 and 5 displayed the different NOEDIFF data (Figure 4). Irradiation of H-11 ($\delta_{\rm H}$ 3.53) affected only signal intensity of H₃-15 ($\delta_{\rm H}$ 1.01), but not H-9 ($\delta_{\rm H}$ 1.80), indicating that hydroxymethyl group in 5 was located in α position. Consequently, 5 was identified as a C-9 epimer of 4.

Trichodermarin F (6) was obtained as a colorless gum with the molecular formula C₁₇H₂₆O₅ deduced from HRESIMS peak at m/z 333.1678 [M+Na]⁺. The ¹H and ¹³C NMR spectroscopic data were similar to those of 7, indicating that 6 possessed the similar skeleton to that of 7. The differences in the NMR spectroscopic data were observed in ring A. Signals of two olefinic carbons (C-9 and C-10) in 7 were replaced by a quaternary oxygenated carbon (C-9, δc 74.2) and methine carbon (C-10, $\delta_{\rm C}$ 44.7). Moreover, the epoxymethylene proton signals in 7 were replaced by signals for two nonequivalent methylene protons (H_{ab}-13, $\delta_{\rm H}$ 1.91, m and 1.44, dd, J = 14.5 and 5.5 Hz). The 1 H- 1 H COSY spectrum displayed the cross peaks of H-10 ($\delta_{\rm H}$ 2.11) to H-11 ($\delta_{\rm H}$ 3.48) and H_{ab}-13 ($\delta_{\rm H}$ 1.91 and 1.44). These data together with HMBC cross peaks of H-11 to C-2 (δ_{C} 80.6), C-5 (δ_{C} 51.8), C-9 (δ_{C} 74.1) and C-13 (δ_{C} 28.0) and H_{ab}-13 to C-2, C-5, C-9, C-10 ($\delta_{\rm C}$ 44.7), C-11 ($\delta_{\rm C}$ 73.7) and C-12 ($\delta_{\rm C}$ 78.6), constructed a methylene bride between C-10 and C-12. The chemical shift of C-12 ($\delta_{\rm C}$ 78.6) attached a hydroxy group at this carbon. In the NOEDIFF experiment (Figure 4), irradiation of H-11 (δ_H 3.48) affected to H₃-15 (δ_H 1.14) whereas signal intensity of H_b -13 was enhanced upon irradiation of H_3 -14 and H_3 -16 (δ_H 1.23). These results indicated that H-11 and H₃-15 were a *cis*-relationship and *trans* to H_b-13, H₃-14 and H₃-16. In addition, irradiation of H-2 ($\delta_{\rm H}$ 4.01) affected signal intensity of H_a-13 ($\delta_{\rm H}$ 1.91). The results suggested that H-2, H_{ab}-13 and H₃-14 located at the same side of molecule. Consequently, compound 6 was a new trichothecence.

The isolated compounds 1, 4, 7-9 and 12, which were obtained in sufficient amounts, were tested for antifungal (*C. albicans*, *C. neoformans* and *M. gypseum*), antimalarial (*P. falciparum*) and cytotoxic (KB and Vero cell lines) activities (Table 3). Interestingly, 7 exhibited the most potent antifungal activity against *C. albicans*, *C. neoformans* and *M. gypseum* with the MIC values of 1, 4 and 2 µg/mL, respectively. Compound 12 was two fold more active against

C. albicans than C. neoformans with the MIC values of 2 and 4 µg/mL, respectively. Compounds 1 and 8 showed much weaker antifungal activity against C. albicans and C. neoformans with equal MIC values of 16 µg/mL while compound 9 was four fold less active against these two fungal strains. Among the tested compounds, 7 displayed the most potent antimalarial activity against P. falciparum (K1 strain) with an IC₅₀ value of 0.1 µM. In addition, the other trichothecenes was less active with the IC₅₀ values in the range of 7.1-9.6 µM. Compounds 7 and 12 showed significant cytotoxicity against KB cell lines with the IC₅₀ values of 2.4 and 3.7 µM, respectively, which were much stronger than standard drug, ellipticine. Moreover, compounds 8 and 9 were approximately four and five folds less active against the same cell lines than 12, respectively. However, 7 exhibited much stronger cytotoxic activity (IC₅₀ value of 0.4) to Vero cell lines than other tested compounds. These results indicated that the 4-OAc and vinylic methyl functionalities would be important for antifungal, antimalarial and cytotoxic (against KB and Vero cell lines) activities. From these data, we conclude that the biological activities of broth extract might be controlled by 7, which is the major component in the extract. In the previously report, compound 8 showed antimalarial 16 and anticancer (against MCF-7)¹⁷ activities. This is the first report on antifungal (C. albicans, C. neoformans and M. gypseum), antimalarial (against P. falciparum) and cytotoxic (KB and Vero cell lines) activities for 7-9 and 12.

EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were recorded on a JASCO P-1020 polarimeter. The melting points were determined on an Electrothermal 9100 melting point apparatus and reported without correction. Infrared (IR) spectra were recorded neat using a

Perkin Elmer 783 FTS165 FT-IR spectrometer. Mass spectra were obtained from a liquid chromatograph-mass spectrometer (2090, LCT, Waters, Micromass). ¹H and ¹³C NMR spectra were recorded on a 300 or 500 MHz Bruker FTNMR Ultra Shield spectrometer. Chemical shifts are expressed in δ (parts per million, ppm), referring to the tetramethylsilane peak. Thin layer chromatography (TLC) and preparative TLC were performed on silica gel 60 GF₂₅₄ (Merck). Column chromatography (CC) was carried out on Sephadex LH-20, silica gel (Merck) type 60 (230-400 mesh ASTM) or type 100 (70-230 mesh ASTM), or reversed phase C₁₈ silica gel. Petroleum ether has a boiling point range of 40–60 °C.

Fungal Material. The soil-derived fungus PSU-RSPG27 was isolated from a soil sample collected from Surat Thani Province, Thailand, and deposited as BCC56868 at BIOTEC Culture Collection, National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand. The fungus PSU-RSPG27 was identified based on morphology and the internal transcribed spacer (ITS1-5.8S-ITS2) rDNA analysis using universal fungal primers. It is a fast growing fungus. Its wooly colony was initially white and became patches green when the conidia were produced. The microscopic morphology showed hyaline septate hyphae, branched conidiophores, flask-shaped phialides and globose to ovoid conidia. Phylogenetic analysis using maximum parsimony method revealed that the fungus PSU-RSPG27 (Genbank accession number KC478544) was closely related and formed a subgroup with various strains of *Trichoderma brevicompactum* (DQ000635, EF417484, HQ596986, FJ610287-610290, EU330934) with 100% nucleotide identity and 99.8-100% bootstrap values. Therefore, the fungus PSU-RSPG27 was identified as *T. brevicompactum*.

Fermentation, Extraction, and Purification. The broth extract (5.3 g) of the fungus PSU-RSPG27 was prepared using the same procedure as described for *Aspergillus sclerotiorum*

PSU-RSPG178.¹⁹ It was subjected to CC over Sepahadex LH-20 using MeOH as a mobile phase to obtain four fractions (A-D). Fraction C (4.7 g) was further separated by CC over silica gel using a gradient of MeOH-CH₂Cl₂ (0:1 to 1:0) to afford nine subfractions (C1-C9). Compound 7 (754.9 mg) was obtained from subfraction C4. Subfraction C5 (1.8 g) was purified using the same procedure as fraction C to provide seven subfractions (C5A-C5G). Subfraction C5E (129.7 mg) was subjected to CC over reversed phase C₁₈ silica gel using a gradient of MeOH-H₂O (7:3 to 1:0) to afford five subfractions (C5E1-C5E5). Subfraction C5E1 (36.1 mg) was purified by CC over silica gel using a gradient of acetone-petroleum ether (1:4 to 1:0) to give eight subfrations. Compound 12 (1.1 mg) was obtained after subjecting the first subfraction to preparative TLC using CHCl₃-petroleum ether (7:3) as a mobile phase. The fifth subfraction (18.8 mg) was subjected to preparative TLC using acetone-CH₂Cl₂ (1:50) as a mobile phase to provide 4 (8.1 mg). Compound 9 (7.1 mg) was obtained after subjecting the sixth subfraction (16.1 mg) to preparative TLC using acetone-CH₂Cl₂ (1:10) as a mobile phase. Subfraction C5E2 (32.5 mg) was purified using the same procedure as subfraction C5E1 to afford five subfractions. Compounds 2 (3.1 mg), 3 (1.3 mg) and 8 (7.0 mg) were obtained after subjecting the second subfraction (12.8 mg) to preparative TLC using ethyl acetate-petroleum ether (1:5) as a mobile phase. The third subfraction (6.8 mg) was purified using acetone-CH₂Cl₂ (1:20) to afford 13 (3.0 mg). Compound 1 (12.0 mg) was obtained after subjecting subfraction C6 (62.9 mg) to CC over silica gel using a mixture of acetone-CH₂Cl₂-petroleum ether (2:1:7) as a mobile phase. Subfraction C7 (1.2 g) was purified using the same procedure as fraction C to provide seven subfractions (C7A-C7G). Subfraction C7D (482.5 mg) was purified by CC over silica gel using a gradient of ethyl acetate-CH₂Cl₂ (1:20 to 1:0) to afford eight subfractions (C7D1-C7D8). Compound 10 (3.1 mg) was obtained after subjecting subfraction C7D3 (16.1 mg) to preparative TLC using a mixture of acetone-CH₂Cl₂-hexane (1:1:8) as a mobile phase. Subfraction C7D5 (62.5 mg) was purified by CC over silica gel using the same elution system as subfraction C6 to afford eight subfractions. Compound 11 (3.1 mg) was obtained after subjecting the fifth subfraction to preparative TLC using ethyl acetate-hexane (7:13) as a mobile phase. Subfraction C7E (39.7 mg) was subjected to CC over silica gel using the same eluent system as subfraction C6 to provide eight subfractions. Compound 6 (1.3 mg) was obtained after subjecting the fifth subfraction (5.3 mg) to preparative TLC using a mixture of acetone-CH₂Cl₂-hexane (2:1:7) as a mobile phase. Subfraction C8 (1.3 g) was purified using the same procedure as fraction C to yield eight subfractions (C8A-C8H). Subfraction C8E (129.4 mg) was purified using the same procedure as subfraction C6 to afford six subfractions. Compound 5 (1.7 mg) was obtained after subjecting the sixth subfraction (16.9 mg) to CC over silica gel using ethyl acetate-CH₂Cl₂ (1:4) as a mobile phase followed by purifying using preparative TLC using a mixture of acetone-CH₂Cl₂-hexane (1:1:8) as a mobile phase.

Trichodermarin A (1): Colorless crystals (EtOH); mp 121-126 °C; $[\alpha]_D^{23}$ +12.7 (*c* 1.1, CH₂Cl₂); IR (neat) ν_{max} 3343, 1441 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HRESIMS m/z [M+Na]⁺ 289.1416 (calcd for C₁₅H₂₂O₄Na, 289.1416)

Trichodermarin B (2): Colorless gum; $[\alpha]_D^{23}$ +10.1 (*c* 1.1, CH₂Cl₂); IR (neat) v_{max} 3458, 1737 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HRESIMS m/z [M+Na]⁺ 331.1535 (calcd for C₁₇H₂₄O₅Na, 331.1521).

Trichodermarin C (3): Colorless gum; $[\alpha]_D^{23}$ $[\alpha]_D^{23}$ +12.3 (*c* 1.1, CH₂Cl₂); IR (neat) ν_{max} 3432, 1733 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HRESIMS m/z [M+Na]⁺ 331.1518 (calcd for C₁₇H₂₄O₅Na, 331.1521).

Trichodermarin D (4): Colorless gum; $[\alpha]_D^{23}$ -30.1 (*c* 0.1, MeOH); IR (neat) v_{max} 3420, 1730 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HRESIMS m/z [M+Na]⁺ 333.1668 (calcd for $C_{17}H_{26}O_5Na$, 333.1678).

Trichodermarin E (5): Colorless gum; $[\alpha]_D^{23}$ +12.3 (*c* 0.1, MeOH); IR (neat) v_{max} 3452, 1731 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HRESIMS m/z [M+Na]⁺ 333.1678 (calcd for $C_{17}H_{26}O_5Na$, 333.1678).

Trichodermarin F (6): Colorless gum; $[\alpha]_D^{23}$ +3.4 (*c* 0.1, CHCl₃); IR (neat) v_{max} 3409, 1730 cm⁻¹; ¹H and ¹³C NMR data, see Tables 1 and 2; HRESIMS m/z [M+Na]⁺ 333.1678 (calcd for C₁₇H₂₆O₅Na, 333.1678).

Preparation of the (*R*)- and (*S*)-MTPA Ester Derivatives of 1. Pyridine (100 μL) and (*R*)-(-)-MTPACl (40 μL) were added to a CH₂Cl₂ solution (200 μL) of 1 (2.5 mg). The reaction mixture was stirred at room temperature overnight. After removal of solvent, the mixture was purified by CC over silica gel using a mixture of acetone-CH₂Cl₂-hexane (1:1:8) as a mobile phase to afford (*S*)-MTPA ester (2.7 mg, 60% yield). Compound 1 (2.9 mg) was treated in a same procedure with (*S*)-(+)-MTPACl and, after purification by CC, (*R*)-MTPA ester (1.8 mg, 40% yield) was obtained.

X-ray Crystallographic Analysis of 1. Crystal data for compound 1 was collected on a Bruker Smart Apex CCD diffractometer equipped with a graphite-monochromatic Mo K α radiation ($\lambda = 0.71073$ Å) source at 293(2) K. Cell refinement, data reductions, and absorption correction were performed using SAINT and SADABS. This structure was solved using direct methods with SHELXS²⁰ and refined with the full-matrix least-squares methods based on F^2 with the SHELXL program.²¹ Non-hydrogen atoms were allowed to vibrate anisotropically in cycles of refinement. All hydrogen atoms were placed in calculated, ideal positions and

refined as riding model approximations on their respective parent atoms. The WinGX v2014.1²² and Mercury²³ programs were used to prepare the materials and molecular graphics for publication. Crystallographic data for the structure for this papar have been deposited with the Cambridge Crystallographic Data Centre (deposit no. CCDC 1554139). Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax: +44-(0)223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

Antimalarial Assay. Antimalarial assay was evaluated against the parasite *P. falciparum* (K1, multidrug-resistant strain) using the microculture radioisotope technique based on the method described.²⁴ Dihydroartemisinine was used as a standard compound.

Cytotoxic Assay. The activity against African green monkey kidney fibroblast (Vero) cells was performed in triplicate employing the method described.²⁵ The activity against KB cell lines was evaluated using the resazurin microplate assay.²⁶ The positive controls were ellipticine for both Vero and KB cells.

Antifungal Assay. Antifungal activity against *C. albicans* NCPF3153 and *C. neoformans* ATCC90113 was carried out using a colorimetric broth microdilution test.²⁷ MICs were recorded by reading the lowest substance concentration that inhibited visible growth. Amphotericin B was a positive control drug.

ASSOCIATED CONTENT

Supporting Information. ¹H and ¹³C NMR spectra for trichodermarins A-F (**1-6**). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author. Tel.: 66 7735 5040 ext: 8603; Fax. 66 77355041

* E-mail address: saranyoo.k@psu.ac.th (S. Klaiklay).

ACKNOWLEDGMENT

S.K. thanks the Thailand Research Fund for a research grant (Grant No. TRG5880202) and Prince of Songkla University, Surat Thani Campus for partial supported. V.R. is grateful to the NSTDA Chair Professor grant (the Fourth Grant) of the Crown Property Bureau Foundation and the National Science and Technology Development Agency. Finally, the National Center for Genetic Engineering and Biotechnology (BIOTEC) is acknowledged for antimalarial, anticancer and cytotoxic assays.

REFERRENCES:

- (1) Newman, D. J.; Cragg, G. M. J. Nat. Prod. **2016**, 79 (3), 629–661.
- (2) Dias, D. A.; Urban, S.; Roessner, U. *Metabolites* **2012**, 2 (4), 303–336.
- (3) Fruhmann, P.; Mikula, H.; Wiesenberger, G.; Varga, E.; Lumpi, D.; Stöger, B.; Häubl, G.; Lemmens, M.; Berthiller, F.; Krska, R.; Adam, G.; Hametner, C.; Fröhlich, J. *J. Nat. Prod.* **2014**, 77 (1), 188–192.
- (4) Shen, L.; Wang, J. S.; Shen, H. J.; Song, Y. C.; Tan, R. X. *Planta Med.* **2010**, 76 (10), 1004–1006.
- (5) Nielsen, K. F.; Gräfenhan, T.; Zafari, D.; Thrane, U. J. Agric. Food Chem. 2005, 53 (21), 8190–8196.

- (6) Shentu, X.; Zhan, X.; Ma, Z.; Yu, X.; Zhang, C. Braz. J. Microbiol. 2014, 45 (1), 248–254.
- Yang, Z.-S.; Li, G.-H.; Zhao, P.-J.; Zheng, X.; Luo, S.-L.; Li, L.; Niu, X.-M.; Zhang, K.-Q. World J. Microbiol. Biotechnol. 2010, 26 (12), 2297–2302.
- (8) Lee, D. H.; Kim, J. J.; Ryu, K. H.; Kim, B. S.; Ryu, S. M. PCT Patent WO 2016/089166 A1, 2016.
- (9) Li, J.; Ren, J.; Bao, L.; Jin, T.; Wang, W.; Pei, Y.; Liu, X.; Li, E. Helv. Chim. Acta 2016, 99 (1), 63–69.
- (10) Choi, S. U.; Choi, E. J.; Kim, K. H.; Kim, N. Y.; Kwon, B.-M.; Kim, S. U.; Bok, S. H.; Lee, S. Y.; Lee, C. O. Arch. Pharm. Res. 1996, 19 (1), 6–11.
- (11) Ayer, W. A.; Miao, S. Can. J. Chem. **1993**, 71 (4), 487–493.
- (12) Xu, X.; Cheng, J.; Zhou, Y.; Zhang, C.; Ou, X.; Su, W.; Zhao, J.; Zhu, G. Chem. Biodivers. 2013, 10 (4), 600–611.
- (13) Zheng, M.; Yao, T.-T.; Xu, X.-J.; Cheng, J.-L.; Zhao, J.-H.; Zhu, G.-N. *Bioorg. Med. Chem. Lett.* **2014**, *24* (15), 3565–3568.
- (14) Cheng, J. L.; Zhou, Y.; Zhao, J. H.; Zhang, C.; Lin, F. C. Chin. Chem. Lett. **2010**, 21 (9), 1037–1040.
- (15) Loukaci, A.; Kayser, O.; Bindseil, K.-U.; Siems, K.; Frevert, J.; Abreu, P. M. J. Nat. Prod.2000, 63 (1), 52–56.
- (16) Takashima, J.; Wataya, Y. JP 11228408, 1999.
- (17) Wang, Y.; Zhang, L.; Li, G.-T.; Li, Z.-H.; Dong, Z.-J.; Li, Y.; Liu, J.-K. *Nat. Prod. Bioprospecting* **2015**, *5* (1), 47–53.
- (18) White, T. J.; Bruns, T.; Lee, S.; Taylor, J. In *PCR Protocols*; Elsevier, 1990; pp 315–322.

- (19) Phainuphong, P.; Rukachaisirikul, V.; Saithong, S.; Phongpaichit, S.; Bowornwiriyapan, K.; Muanprasat, C.; Srimaroeng, C.; Duangjai, A.; Sakayaroj, J. *J. Nat. Prod.* **2016**, *79* (6), 1500–1507.
- (20) Sheldrick, G. M. Acta Crystallogr. A 2008, 64 (1), 112–122.
- (21) Sheldrick, G. M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3–8.
- (22) Farrugia, L. J. J. Appl. Crystallogr. **2012**, 45 (4), 849–854.
- (23) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. *J. Appl. Crystallogr.* **2008**, *41* (2), 466–470.
- (24) Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D. *Antimicrob. Agents Chemother.* **1979**, *16* (6), 710–718.
- (25) Hunt, L.; Jordan, M.; De Jesus, M.; Wurm, F. M. *Biotechnol. Bioeng.* **1999**, *65* (2), 201–205.
- (26) O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Eur. J. Biochem. 2000, 267 (17), 5421–5426.
- (27) Phongpaichit, S.; Rungjindamai, N.; Rukachaisirikul, V.; Sakayaroj, J. *FEMS Immunol. Med. Microbiol.* **2006**, *48* (3), 367–372.

Figure 1. Structures of compounds **1–13** isolated from *Trichoderma brevicompactum* PSU-RSPG27.

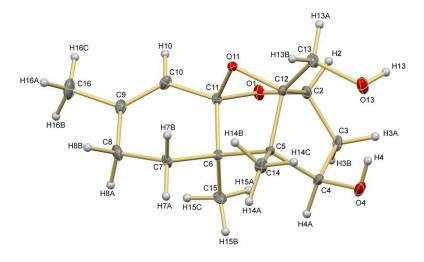


Figure 2. X-ray crystallographic data of compound 1.

Figure 3. $\Delta \delta (\delta_S - \delta_R)$ values for (*S*)- and (*R*)-MTPA esters of compound **1**.

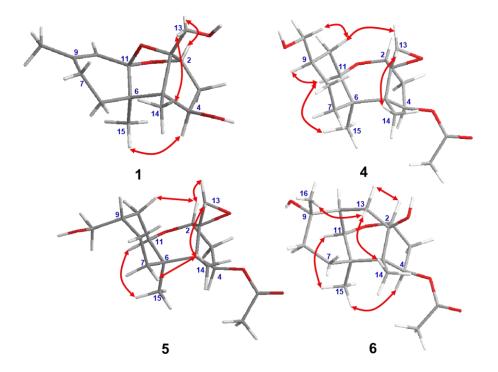


Figure 4. Key NOEDIFF data () of compounds 1, 4, 5 and 6.

Table 1. The ¹H NMR data of trichothecenes **1-6** [CDCl₃, δ (ppm), mult (*J* in Hz)]

Position	1 ^a	2 ^a	3 ^b	4 ^a	5 ^b	6 ^b
2	4.20, d (5.4)	4.35, d (5.4)	3.70, d (5.0)	3.83, d (5.0)	3.82, d (5.0)	4.01, d (4.5)
3	a: 2.56, dd (16.5, 7.5)	a: 2.61, dd (16.8, 7.8)	4.19, dd (5.0, 3.0)	a: 2.46, dd (15.5, 8.0)	a: 2.48, dd (15.5, 7.0)	a: 2.32, dd (16.0, 7.5)
	b: 1.71, m	b: 1.85, m		b: 1.96, m	b: 1.97, ddd (15.5, 9.0, 4.0)	b: 1.94, m
4	4.08, brd (6.9)	5.29, dd (7.8, 1.8)	5.00, d (3.0)	5.46, dd (8.0, 3.5)	5.47, dd (8.0, 3.5)	5.52, d (7.0)
7	a: 2.15, m	a: 2.05, m	a: 2.00, m	a: 2.03, m	a: 1.88, td (13.0, 4.0)	a: 1.76, td (14.5, 5.0)
	b: 1.96, m	b: 1.96, m	b: 1.45, m	b: 1.20, m	b: 1.42, brd (14.0)	b: 1.33, dd (9.5, 5.0)
8	a: 1.85, ddd (12.9, 5.2, 1.2)	a: 1.90, m	a: 2.01, m	a: 1.68, m	a: 1.70, m	a: 1.70, m
	b: 1.43, ddd (12.9, 5.2, 1.2)	b: 1.45, dd (12.9, 3.9)	b: 1.45, m	b: 1.62, m	b: 1.43, m	b: 1.51, dd (15.0 5.0)
9				1.85, m	1.80, m	
10	5.40, s	5.44, s	5.52, d (5.0)	a: 1.97, m	a: 1.73, m	2.10, m
				b: 1.73, m	b: 1.17, ddd (15.5, 8.5, 3.5)	
11			3.98, d (5.0)	3.48, m	3.53, m	3.48, d (3.5)

13	a: 3.99, d (10.5)	a: 4.05, d (12.9)	a: 3.06, d (3.5)	a: 3.13, d (4.0)	a: 3.15, d (4.5)	a: 1.91, m
	b: 3.93, d (10.5)	b: 3.84, d (12.9)	b: 2.79, d (3.5)	b: 2.87, d (4.0)	b: 2.86, d (4.5)	b: 1.44, dd (14.5, 5.5)
14	0.89, s	0.91, s	0.78, s	0.68, s	0.69, s	1.02, s
15	1.05, s	0.97, s	0.92, s	1.05, s	1.01, s	1.14, s
16	1.76, s	1.78, s	1.73, s	a: 3.66, dd (8.5, 2.5)	a: 3.49, dd (10.5, 6.0)	1.23, s
				b: 3.65, dd (8.5, 2.5)	b: 3.44, dd (10.5, 6.0)	
2′		2.06, s	2.15, s	2.07, s	2.07, s	2.07, s

^a Record in 300 MHz

^b Record in 500 MHz

Table 2. The 13 C NMR data of trichothecenes **1-6** [CDCl₃, δ (ppm)].

Position	1 ^a	2 ^a	3 ^b	4 ^a	5 ^b	6 ^b
2	82.7, CH	79.5, CH	118.9, CH	79.4, CH	79.5, CH	80.6, CH
3	42.0, CH ₂	38.5, CH ₂	78.6, CH	36.6, CH ₂	36.8, CH ₂	40.7, CH ₂
4	75.6, CH	78.1, CH	84.6, CH	74.8, CH	74.9, CH	80.5, CH
5	47.8, C	53.1, C	49.0, C	49.5, C	49.4, C	51.8, C
6	54.5, C	48.7, C	41.4, C	41.3, C	41.4, C	40.6, C
7	28.9, CH ₂	28.9, CH ₂	28.1, CH ₂	24.2, CH ₂	28.1, CH ₂	32.8, CH ₂
8	30.7, CH ₂	30.5, CH ₂	24.6, CH ₂	22.8, CH ₂	24.7, CH ₂	32.1, CH ₂
9	145.6, C	145.6, C	139.8, C	32.7, CH	34.6, CH	74.1, C
10	116.2, CH	116.2, CH	118.9, CH	28.5, CH ₂	30.2, CH	44.7, CH
11	107.9, C	107.7, C	71.6, CH	71.8, CH	72.3, CH	73.7, CH
12	94.7, C	95.7, C	64.6, C	65.4, C	65.6, C	78.6, C
13	59.5, CH ₂	59.2, CH ₂	47.2, CH ₂	48.3, CH ₂	48.5, CH ₂	28.0, CH ₂
14	10.6, CH ₃	10.2, CH ₃	$6.0, CH_3$	5.4, CH ₃	5.6, CH ₃	8.4, CH ₃
15	14.4, CH ₃	14.3, CH ₃	16.1, CH ₃	17.6, CH ₃	17.7, CH ₃	25.5, CH ₃
16	23.0, CH ₃	22.9, CH ₃	23.3, CH ₃	66.8, CH ₂	68.1, CH ₂	$28.1, CH^3$
1′		170.0, C	172.6, C	171.0, C	171.0, C	169.6, C
2′		21.1, CH ₃	21.1, CH ₃	21.1, CH ₃	21.1, CH ₃	21.2, CH ₃

^a Record in 75 MHz

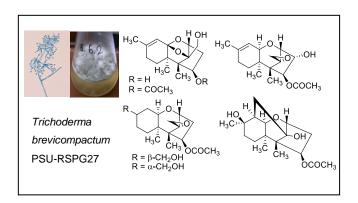

^b Record in 125 MHz

Table 3 Biological activities for compounds 1, 4, 7-9 and 12.

	Antifungal ^a			Antimalarial	Cytotoxicity	
Compounds	(M	IIC, μg/m	L)	IC ₅₀ (μM)	IC50 (μΜ)
	CA	CN	MG	P. falciparum	KB	Vero
1	16	16	IN ^b	7.4	44.7	15.3
4	IN^b	IN^b	IN^b	IN^b	116.2	45.9
7	1	4	2	0.1	2.4	0.4
8	16	16	IN^b	7.1	16.1	6.9
9	64	64	IN^b	8.8	20.6	7.8
12	2	4	IN^b	9.6	3.7	9.9
Amphotericin B	0.5	0.25				
Miconazole			1			
Dihydroartemisinine				2.2°		
Ellipticine					8.2	4.1

aCA = Candida albicans NCPF3153, CN = Cryptococcus neoformans ATCC90113 flucytosine-resistant and MG = Microsporum gypseum clinical isolate. b IN = Inactive. c nM.

ABSTRACT GRAPHIC

