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สรปุผลการวิจยั :
Paper ř
Theorem ř. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a
q-uniformly smooth and uniformly convex Banach space E which admits a weakly sequentially
continuous generalized duality mapping Jq : E → E∗. Let QC be a sunny nonexpansive retraction
from E onto C, A : C → E be an β-inverse-strongly accretive operator, S = {S(s) : s ≥ 0}
be a nonexpansive semigroup from C into itself, L1 : C → E be a L-Lipschitzian mapping with
constant L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constant
κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such that {λn} ⊂ [a, b] ⊂ (0, 1),
0 < µ < ( qη

cqκq )
1

q−1 where cq is a positive real number, 0 < a ≤ λn ≤ b < ( qβcq )
1

q−1 , 0 ≤ γL < τ where
τ = µ(η − cqµq−1κq

q ) and F := F (S) ∩ V I(C,A) ̸= ∅. Let {xn} be the sequences defined by x1 ∈ C

and 
zn = QC(xn − λnAxn)

yn = QC

[
αnγL1xn + γnxn + ((1− γn)I − αnµL2)S(µn)zn

]
,

xn+1 = βnxn + (1− βn)S(µn)yn,

(ř)

which satisfy the following conditions:
(Cř) limn→∞ αn = 0, ∑∞

n=0 αn = ∞; and limn→∞ |αn+1 − αn| = 0;
(CŚ) limn→∞ |λn+1 − λn| = 0, lim infn→∞ λn > 0;
(Cś) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(CŜ) limn→∞ µn = 0;
(Cŝ) limn→∞ supx∈C̃ ∥S(µn+1)x− S(µn)x∥ = 0, C̃ bounded subset of C;
(CŞ) limn→∞ |γn+1 − γn| = 0, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
Then {xn} converges strongly to x∗ ∈ F which also solves the following variational inequality:

⟨γL1x
∗ − µL2x

∗, Jq(z − x∗)⟩ ≤ 0, ∀z ∈ F. (Ś)

Paper Ś
Theorem Ś. Let C be a nonempty closed convex subset of uniformly convex and uniformly
smooth Banach space E. Let f be a generalized contraction mapping from C into itself and
S = {T (t) : t ≥ 0} be a nonexpansive semigroup from C into itself such that F (S) ̸= 0. Let {xn}
be the sequences defined by x1 ∈ C and

zn = λnxn + (1− λn)xn+1,

yn = δnf(xn) + (1− δn)zn,

xn+1 = αnxn + βnf(xn) + γnT (µn)yn,

(ś)

where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in (0, 1). The following conditions are
satisfied:

(i) αn + βn + γn = 1;
(ii) lim

n→∞
βn = lim

n→∞
δn = lim

n→∞
µn = lim

n→∞
|αn+1 − αn| = lim

n→∞
|λn+1 − λn| = 0 and

lim
n→∞

sup
x∈C̃

∥T (µn+1)x− T (µn)x∥ = 0, C̃ bounded subset of C;



(iii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1;

(iv)
∞∑
n=0

βn = ∞ for all n ≥ 1.

Then {xn} converges strongly to x∗ ∈ F (S) which also solves the following variational inequality:

⟨(I − f)x∗, J(z − x∗)⟩ ≤ 0,∀z ∈ F (S). (Ŝ)
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1. Introduction

According to our framework throughout this research, we first preview some definitions involving a
Banach space E as follows. Let U = {x ∈ E : ‖x‖ = 1}.

• E is said to be uniformly convex if, for any ǫ ∈ (0, 2], there exists δ > 0 such that, for any
x, y ∈ U , ‖x − y‖ ≥ ǫ implies ‖x+y

2 ‖ ≤ 1 − δ.
It is known that a uniformly convex Banach space is reflexive and strictly convex.

• E is said to be smooth if limt→0
‖x+ty‖−‖x‖

t exists for all x, y ∈ U .
It is also said to be uniformly smooth if the limit is attained uniformly for all x, y ∈ U . The
modulus of smoothness of E is defined by

ρ(τ) = sup
{1

2
(‖x + y‖ + ‖x − y‖) − 1 : x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ

}

,

where ρ : [0,∞) → [0,∞) is a function.

It is known that E is uniformly smooth if and only if limτ→0
ρ(τ)

τ = 0.
• E is said to be q-uniformly smooth if there exists a constant c > 0 such that ρ(τ) ≤ cτq for

all τ > 0 where q is a fixed real number with 1 < q ≤ 2.

Let E be a real Banach space and E∗ be the dual space of E with norm ‖ · ‖ and 〈·, ·〉 pairing between

E and E∗. For q > 1, the generalized duality mapping Jq : E → 2E∗

is defined by

Jq(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖q, ‖f‖ = ‖x‖q−1}

for all x ∈ E. In particular, if q = 2, the mapping J2 is called the normalized duality mapping and
written by J2 = J as usual. Further, we have the following properties of the generalized duality
mapping Jq:

∗Corresponding author.
§ Email address: u.witthayarat@hotmail.com (U. Witthayarat), chaichana.jai@rmutr.ac.th (C. Jaiboon),

somyotp@nu.ac.th (S. Plubtieng) and p.katchang@rmutl.ac.th (P. Katchang).
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(i) Jq(x) = ‖x‖q−2J2(x) for all x ∈ E with x 6= 0;
(ii) Jq(tx) = tq−1Jq(x) for all x ∈ E and t ∈ [0,∞);
(iii) Jq(−x) = −Jq(x) for all x ∈ E.
Certainly, if E is smooth, then Jq is single-valued and can be written by jq (see also [1, 2]).

Let C be a nonempty closed convex subset of a real Banach space E. Recall that a mapping
A : C → C is said to be
(i) Lipschitzian with Lipschitz constant L > 0 if ‖Ax − Ay‖ ≤ L‖x − y‖, ∀x, y ∈ C;
(ii) nonexpansive if ‖Ax − Ay‖ ≤ ‖x − y‖, ∀x, y ∈ C.

An operator A : C → E is said to be
(i) accretive if there exists jq(x − y) ∈ Jq(x − y) such that

〈Ax − Ay, jq(x − y)〉 ≥ 0, ∀x, y ∈ C;

(ii) β-strongly accretive if for any β > 0 there exists jq(x − y) ∈ Jq(x − y) such that

〈Ax − Ay, jq(x − y)〉 ≥ β‖x − y‖q, ∀x, y ∈ C;

(iii) β-inverse strongly accretive if, for any β > 0 there exists jq(x − y) ∈ Jq(x − y),

〈Ax − Ay, jq(x − y)〉 ≥ β‖Ax − Ay‖q, ∀x, y ∈ C.

Let D be a subset of C and Q : C → D. Then Q is said to be sunny if Q(Qx + t(x − Qx)) = Qx,
whenever Qx+ t(x−Qx) ∈ C for x ∈ C and t ≥ 0. A subset D of C is said to be a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction Q of C onto D (see [3, 4, 5]). A mapping
Q : C → C is called a retraction if Q2 = Q. If a mapping Q : C → C is a retraction, then Qz = z for
all z are in the range of Q.

A family S = {S(s) : 0 ≤ s < ∞} of mappings of C into itself is called a nonexpansive semigroup
on C if it satisfies the following conditions:

(i) S(0)x = x for all x ∈ C;
(ii) S(s + t) = S(s)S(t) for all s, t ≥ 0;
(iii) ‖S(s)x − S(s)y‖ ≤ ‖x − y‖ for all x, y ∈ C and s ≥ 0;
(iv) for each x ∈ C, the mapping S(·)x from [0,∞) into C is continuous.

Let F (S) stands for the common fixed point set of the semigroup S, i.e., F (S) = {x ∈ C : S(s)x =
x, ∀s > 0}. It is easy to see that F (S) is closed and convex (see also [6, 7, 8, 9]).

In 1969, Takahashi [10] proved the first fixed point theorem for a noncommutative semigroup of
nonexpansive mappings which generalizes De Marr’s [11] fixed point theorem. For works related to
semigroups of nonexpansive, asymptotically nonexpansive, and asymptotically nonexpansive type re-
lated to reversibility of a semigroup, we refer the reader to [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
In 2007, Lau et al. [18] introduced the following Mann’s explicit iteration process;

xn+1 = αnx + (1 − αn)T (µn)xn, ∀n ≥ 1,

for a semigroup S = {T (s) : s ∈ S} of nonexpansive mappings on a compact convex subset C of a
smooth and strictly convex Banach space. In 2012, Wangkeeree and Preechasilp [24] introduced the
iterative scheme:















x1 ∈ C,
zn = γnxn + (1 − γn)T (tn)xn,
yn = αnxn + (1 − αn)T (tn)zn,
xn+1 = βnf(xn) + (1 − βn)yn, n ≥ 0.

They proved the strong convergence theorems by using a nonexpansive semigroup in Banach spaces.
In 2006, Aoyama et al. [25] proved a weak convergence theorem in Banach spaces by using the

iterative algorithm as the following
{

x1 = x ∈ C,
xn+1 = αnxn + (1 − αn)QC(xn − λnAxn),

for all n ≥ 1. They solved the generalized variational inequality problem for finding a point x ∈ C such
that

〈Ax, J(y − x)〉 ≥ 0 (1.1)

for all y ∈ C. The solution set of (1.1) is denoted by V I(C, A). Variational inequality has become a
rich of inspiration in pure and applied mathematics. Recently, classical variational inequality problems
have been extended and generalized to study a large variety of problems arising in structural analysis,
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economics, optimization, operations research and engineering sciences and have witnessed an explosive
growth in theoretical advances, algorithmic development, etc; see e.g. [26, 27, 28].

In 2013, Song and Ceng [29] proved a strong convergence theorem in a q-uniformly smooth Banach
space as the following:























x1 ∈ C,
zn = QC(xn − σBxn),
kn = QC(zn − λAzn),
yn = βnkn + (1 − αn)xn,
xn+1 = QC [αnγfxn + γnxn + ((1 − γn)I − αnµV )Tnyn], n ≥ 0.

(1.2)

They introduced a general iterative algorithm for finding a common element of the set of common fixed
points of an infinite family of nonexpansive mappings and the solution set of systems of variational
inequalities.

Motivated and inspired by Wangkeeree and Preechasilp [24] and Song and Ceng [29]. In this paper,
we introduce a new iterative scheme for finding common solutions of a variational inequality for an
inverse-strongly accretive mapping and the solutions of a fixed point problem for a nonexpansive
semigroup by using the modified Mann iterative method. We shall prove the strong convergence
theorem in a q-uniformly smooth Banach spaces under some parameters controlling conditions. Our
results extend and improve the recent results of Aoyama et al. [25], Wangkeeree and Preechasilp [24],
Song and Ceng [29] and other authors.

2. Preliminaries

A Banach space E is said to satisfy Opial’s condition if for any sequence {xn} in E, xn ⇀ x(n → ∞)
implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ E with x 6= y.

By [30, Theorem 1], it is well known that if E admits a weakly sequentially continuous duality mapping,
then E satisfies Opial’s condition, and E is smooth.

We need the following lemmas for proving our main results.

Proposition 2.1. ([3]) Let E be a smooth banach space and let C be a nonempty subset of E. Let Q
: E → C be a retraction and let J be the normalized duality mapping on E. Then the following are
equivalent:
(i) Q is sunny and nonexpansive;
(ii) ‖Qx − Qy‖2 ≤ 〈x − y, J(Qx − Qy)〉, ∀x, y ∈ E;
(iii) 〈x − Qx, J(y − Qx)〉 ≤ 0, ∀x ∈ E, y ∈ C.
If Jq is the generalized duality mapping on E then 〈x−Qx, Jq(y−Qx)〉 ≤ 0, ∀x ∈ E, y ∈ C is equivalent
to this Proposition (see [29]).

Proposition 2.2. ([4, 5, 31]) Let C be a nonempty closed convex subset of a uniformly convex and
uniformly smooth Banach space E and let T be a nonexpansive mapping of C into itself with F (T ) 6= ∅.
Then the set F(T) is a sunny nonexpansive retract of C.

Lemma 2.3. ([25]) Let C be a nonempty closed convex subset of a smooth Banach space E. Let QC

be a sunny nonexpansive retraction from E onto C and let A be an accretive operator of C into E.
Then, for all λ > 0,

V I(C, A) = F (Q(I − λA)),

where V I(C, A) =
{

x∗ ∈ C : 〈Ax∗, J(x − x∗)〉 ≥ 0, ∀x ∈ C
}

.

Lemma 2.4. ([32])Let C be a nonempty bounded closed convex subset of a uniformly convex Banach
space E and T : C → C be a nonexpansive mapping. If {xn} is a sequence of C such that xn ⇀ x and
xn − Txn → 0 then x is a fixed point of T .

Lemma 2.5. ([33]) Let r > 0 and let E be a uniformly convex Banach space. Then, there exists a
continuous, strictly increasing and convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + (1 − λ)y‖2 ≤ λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)g(‖x − y‖)

for all x, y ∈ Br := {z ∈ E : ‖z‖ ≤ r} and 0 ≤ λ ≤ 1.
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Lemma 2.6. ([34]) Let E be a real smooth and uniformly convex Banach space and let r > 0. Then
there exists a strictly increasing, continuous and convex function g : [0, 2r] → R such that g(0) = 0 and

g(‖x − y‖) ≤ ‖x‖2 − 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ Br,

where Br = {z ∈ E : ‖z‖ ≤ r}.

Lemma 2.7. ([33]) Let E be a real q-uniformly smooth Banach space, then there exists a constant
cq > 0 such that

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉 + cq‖y‖
q, ∀x, y ∈ E.

In particular, if E is real 2-uniformly smooth Banach space, then there exists a best smooth constant
K > 0 such that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x)〉 + 2K‖y‖2, ∀x, y ∈ E.

Lemma 2.8. ([35]) Let E be a real Banach space and J : E → 2E∗

be the normalized duality mapping.
Then, for any x, y ∈ E, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉

for all j(x + y) ∈ J(x + y) with x 6= y.

Lemma 2.9. ([36]) Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a
sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn

for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖− ‖xn+1 − xn‖) ≤ 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.10. ([37]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 αn = ∞

(2) lim supn−→∞
δn

αn
≤ 0 or

∑∞
n=1 |δn| < ∞.

Then limn−→∞ an = 0.

Lemma 2.11. ([38, 39]) Let C be a nonempty, closed and convex subset of a real q-uniformly smooth
Banach space E, L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constants

κ, η > 0 and let 0 < µ < ( qη
cqκq )

1
q−1 , τ = µ(η − cqµq−1κq

q ), then for t ∈ (0, min{1, 1
τ }), the mapping

S : C → E defined by S := (I − tµL2) is a contraction with a constant 1 − tτ .

Lemma 2.12. ([29]) Let C be a nonempty, closed and convex subset of a real reflexive and q-uniformly
smooth Banach space E which admits a weakly sequentially continuous generalized duality mapping
Jq from E into E*. Let QC be a sunny nonexpansive retraction from E onto C, V : C → E a k-
Lipschitzian and η-strongly accretive operator with constants k, η > 0. Suppose f : C → E is a
L-Lipschitzian mapping with constant L > 0 and T : C → C a nonexpansive mapping such that

F (T ) 6= ∅. Let 0 < µ < ( qη
cqκq )

1
q−1 and 0 ≤ γL < τ where τ = µ(η − cqµq−1κq

q ). Then {xt} defined by

xt = QC [tγfxt + (I − tµV )Txt] converges strongly to some point x∗ ∈ F (T ) as t → 0, which is the
unique solution of the variational inequality:

〈γfx∗ − µV x∗, Jq(p − x∗)〉 ≤ 0, ∀p ∈ F (T ).

Lemma 2.13. ([29]) Let C be a closed convex subset of a smooth Banach space E. Let C̃ be a

nonempty subset of C. Let Q : C → C̃ be a retraction and let J, Jq be the normalized duality mapping
and generalized duality mapping on E, respectively. Then the following are equivalent:
(i) Q is sunny and nonexpansive;
(ii) ‖Qx − Qy‖2 ≤ 〈x − y, J(Qx − Qy)〉, ∀x, y ∈ E;

(iii) 〈x − Qx, J(y − Qx)〉 ≤ 0, ∀x ∈ C, y ∈ C̃;

(iv) 〈x − Qx, Jq(y − Qx)〉 ≤ 0, ∀x ∈ C, y ∈ C̃.

Lemma 2.14. ([41]) Let q > 1. Then the following inequality holds:

ab ≤
1

q
aq +

q − 1

q
b

q

q−1

for arbitrary positive real numbers a, b.
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3. Main results

Theorem 3.1. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a q-
uniformly smooth and uniformly convex Banach space E which admits a weakly sequentially continuous
generalized duality mapping Jq : E → E∗. Let QC be a sunny nonexpansive retraction from E onto
C, A : C → E be an β-inverse-strongly accretive operator, S = {S(s) : s ≥ 0} be a nonexpansive
semigroup from C into itself, L1 : C → E be a L-Lipschitzian mapping with constant L ≥ 0 and
L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constant κ, η > 0. Assume

{αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1

where cq is a positive real number, 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η − cqµq−1κq

q )

and F := F (S) ∩ V I(C, A) 6= ∅. Let {xn} be the sequences defined by x1 ∈ C and






zn = QC(xn − λnAxn)
yn = QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

,
xn+1 = βnxn + (1 − βn)S(µn)yn,

(3.1)

which satisfy the following conditions:

(C1) limn→∞ αn = 0,
∑∞

n=0 αn = ∞; and limn→∞ |αn+1 − αn| = 0;
(C2) limn→∞ |λn+1 − λn| = 0, lim infn→∞ λn > 0;
(C3) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;
(C4) limn→∞ µn = 0;

(C5) limn→∞ supx∈C̃ ‖S(µn+1)x − S(µn)x‖ = 0, C̃ bounded subset of C;
(C6) limn→∞ |γn+1 − γn| = 0, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.

Then {xn} converges strongly to x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0, ∀z ∈ F. (3.2)

Proof . First of all, we prove that {xn} is bounded. Let p ∈ F and 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , we

have

‖zn − p‖q = ‖QC(xn − λnAxn) − QC(p − λnAp)‖q

≤ ‖(I − λnA)xn − (I − λnA)p‖q

= ‖(xn − p) − λn(Axn − Ap)‖q

≤ ‖xn − p‖q − qλn〈Axn − Ap, jq(xn − p)〉 + cqλ
q
n‖Axn − Ap‖q

≤ ‖xn − p‖q − qβλn‖Axn − Ap‖2 + cqλ
q
n‖Axn − Ap‖q

= ‖xn − p‖q − λn(qβ − cqλ
q−1
n )‖Axn − Ap‖q

≤ ‖xn − p‖q. (3.3)

Therefore ‖zn − p‖ ≤ ‖xn − p‖ and I − λnA is a nonexpansive where I is an identity mapping. By
condition (C1), we may assume, without loss of generality, that αn < min{α, α

τ } where 0 < α <
lim infn→∞(1−γn). From Lemma 2.11, we conclude that ‖(1−γn)I −αnµL2‖ ≤ (1−γn)−αnτ . Since
0 ≤ γL < τ , we have

‖xn+1 − p‖ = ‖βn(xn − p) + (1 − βn)(S(µn)yn − p)‖

≤ βn‖xn − p‖ + (1 − βn)‖yn − p‖

= βn‖xn − p‖ + (1 − βn)
∥

∥QC

[

αnγL1xn + γnxn

+((1 − γn)I − αnµL2)S(µn)zn

]

− p
∥

∥

≤ βn‖xn − p‖ + (1 − βn)‖[(1 − γn)I − αnµL2][S(µn)zn − p]

+αn(γL1xn − µL2p) + γn(xn − p)‖

≤ βn‖xn − p‖ + (1 − βn)(1 − γn − αnτ)‖S(µn)zn − p‖

+(1 − βn)αn‖γL1xn − µL2p‖ + (1 − βn)γn‖xn − p‖

≤ βn‖xn − p‖ + (1 − βn)(1 − γn − αnτ)‖xn − p‖

+(1 − βn)αnγ‖L1xn − L1p‖ + (1 − βn)αn‖γL1p − µL2p‖

+(1 − βn)γn‖xn − p‖

≤ βn‖xn − p‖ + (1 − βn)‖xn − p‖ − (1 − βn)γn‖xn − p‖
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−(1 − βn)αnτ‖xn − p‖ + (1 − βn)αnγL‖xn − p‖

+(1 − βn)αn‖γL1p − µL2p‖ + (1 − βn)γn‖xn − p‖

= ‖xn − p‖ − (1 − βn)αnτ‖xn − p‖

+(1 − βn)αnγL‖xn − p‖ + (1 − βn)αn‖γL1p − µL2p‖

= ‖xn − p‖ − (1 − βn)αn(τ − γL)‖xn − p‖

+(1 − βn)αn(τ − γL)
‖γL1p − µL2p‖

τ − γL
.

By induction, we conclude that

‖xn − p‖ ≤ max
{

‖x1 − p‖,
‖γL1p − µL2p‖

τ − γL

}

, ∀n ≥ 1.

This implies that {xn} is bounded, so are {Axn}, {yn}, {S(µn)yn}, {zn} and {S(µn)zn}.
Next, we will show that limn→∞ ‖xn+1 − xn‖ = 0 and we observe that

‖zn+1 − zn‖ = ‖QC(xn+1 − λn+1Axn+1) − QC(xn − λnAxn)‖

≤ ‖(xn+1 − λn+1Axn+1) − (xn − λnAxn)‖

= ‖(xn+1 − λn+1Axn+1) − (xn − λn+1Axn) + (λn − λn+1)Axn‖

≤ ‖(I − λn+1A)xn+1 − (I − λn+1A)xn‖ + |λn+1 − λn‖Axn‖

≤ ‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖,

‖S(µn+1)zn+1 − S(µn)zn‖ ≤ ‖S(µn+1)zn+1 − S(µn+1)zn‖

+‖S(µn+1)zn − S(µn)zn‖

≤ ‖zn+1 − zn‖ + ‖S(µn+1)zn − S(µn)zn‖

≤ ‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖,

and

‖yn+1 − yn‖ =
∥

∥QC

[

αn+1γL1xn+1 + γn+1xn+1

+((1 − γn+1)I − αn+1µL2)S(µn+1)zn+1

]

−QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]∥

∥

≤
∥

∥

[

αn+1γL1xn+1 + γn+1xn+1

+((1 − γn+1)I − αn+1µL2)S(µn+1)zn+1

]

−
[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]∥

∥

=
∥

∥

[

αn+1γL1xn+1 + γn+1xn+1

+((1 − γn+1)I − αn+1µL2)S(µn+1)zn+1

]

−
[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

+αn+1γL1xn − αn+1γL1xn + γn+1xn − γn+1xn

+((1 − γn+1)I − αn+1µL2)S(µn)zn

−((1 − γn+1)I − αn+1µL2)S(µn)zn

∥

∥

≤ αn+1γ‖L1xn+1 − L1xn‖ + γn+1‖xn+1 − xn‖

+
∥

∥

[

(1 − γn+1)I − αn+1µL2

][

S(µn+1)zn+1 − S(µn)zn

]
∥

∥

+|αn+1 − αn|γ‖L1xn‖ + |αn+1 − αn|µ‖L2S(µn)zn‖

+|γn+1 − γn|‖S(µn)zn − xn‖

≤ αn+1γL‖xn+1 − xn‖ + γn+1‖xn+1 − xn‖

+[(1 − γn+1)I − αn+1τ ]‖S(µn+1)zn+1 − S(µn)zn‖

+|αn+1 − αn|
[

γ‖L1xn‖ + µ‖L2S(µn)zn‖
]

+|γn+1 − γn|‖S(µn)zn − xn‖
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≤ αn+1γL‖xn+1 − xn‖ + γn+1‖xn+1 − xn‖

+[(1 − γn+1)I − αn+1τ ]
[

‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖
]

+|αn+1 − αn|
[

γ‖L1xn‖ + µ‖L2S(µn)zn‖
]

+|γn+1 − γn|‖S(µn)zn − xn‖

= [1 − αn+1(τ − γL)]‖xn+1 − xn‖

+[(1 − γn+1)I − αn+1τ ]
[

|λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖
]

+|αn+1 − αn|
[

γ‖L1xn‖ + µ‖L2S(µn)zn‖
]

+|γn+1 − γn|‖S(µn)zn − xn‖

≤ ‖xn+1 − xn‖ + |λn+1 − λn|‖Axn‖

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖

+|αn+1 − αn|
[

γ‖L1xn‖ + µ‖L2S(µn)zn‖
]

+|γn+1 − γn|‖S(µn)zn − xn‖

≤ ‖xn+1 − xn‖ +
[

|αn+1 − αn| + |γn+1 − γn| + |λn+1 − λn|
]

M

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖,

where M = supn≥0

{

‖Axn‖, γ‖L1xn‖ + µ‖L2S(µn)zn‖, ‖S(µn)zn − xn‖
}

< ∞. It follows that

‖S(µn+1)yn+1 − S(µn)yn‖ ≤ ‖S(µn+1)yn+1 − S(µn+1)yn‖ + ‖S(µn+1)yn − S(µn)yn‖

≤ ‖yn+1 − yn‖ + ‖S(µn+1)yn − S(µn)yn‖

≤ ‖xn+1 − xn‖ +
[

|αn+1 − αn| + |γn+1 − γn| + |λn+1 − λn|
]

M

+ sup
z∈{zn}

‖S(µn+1)z − S(µn)z‖

+ sup
y∈{yn}

‖S(µn+1)y − S(µn)y‖. (3.4)

Form the condition (C1), (C2), (C5)-(C6) and 3.4, we have

lim sup
n→∞

(

‖S(µn+1)yn+1 − S(µn)yn‖ − ‖xn+1 − xn‖
)

≤ 0.

Applying Lemma 2.9, we obtain

lim
n→∞

‖S(µn)yn − xn‖ = 0.

Therefore, we get

lim
n→∞

‖xn+1 − xn‖ = 0. (3.5)

Next, we will show that limn→∞ ‖xn −S(µn)xn‖ = 0, by the convexity of ‖ · ‖q for all q > 1, Lemma
2.7 and (3.3), we have

‖yn − p‖q = ‖QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

− p‖q

≤ ‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

+ αn

(

γL1xn − µL2S(µn)zn

)

‖q

≤ ‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

‖q

+q
〈

αn

(

γL1xn − µL2S(µn)zn

)

, Jq

(

γn(xn − p)

+(1 − γn)
(

S(µn)zn − p
))〉

+cq‖αn

(

γL1xn − µL2S(µn)zn

)

‖q

≤ γn‖xn − p‖q + (1 − γn)‖S(µn)zn − p‖q

+qαn‖γL1xn − µL2S(µn)zn‖

×‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

‖q−1

+cqα
q
n‖γL1xn − µL2S(µn)zn‖

q
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≤ γn‖xn − p‖q + (1 − γn)‖zn − p‖q + αnM1

≤ γn‖xn − p‖q + (1 − γn)
[

‖xn − p‖q − λn(qβ − cqλ
q−1
n )‖Axn − Ap‖q

]

+αnM1

= ‖xn − p‖q − (1 − γn)λn(qβ − cqλ
q−1
n )‖Axn − Ap‖q + αnM1,

where

M1 = sup
n≥0

{

q‖γL1xn − µL2S(µn)zn‖‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

‖q−1

+cqα
q−1
n ‖γL1xn − µL2S(µn)zn‖

q
}

< ∞.

By the convexity of ‖ · ‖q for all q > 1, we obtain

‖xn+1 − p‖q ≤ βn‖xn − p‖q + (1 − βn)‖S(µn)yn − p‖q

≤ βn‖xn − p‖q + (1 − βn)‖yn − p‖q

≤ βn‖xn − p‖q + (1 − βn)
[

‖xn − p‖q

−(1 − γn)λn(qβ − cqλ
q−1
n )‖Ax − Ay‖q + αnM1

= ‖xn − p‖q − (1 − βn)(1 − γn)λn(qβ − cqλ
q−1
n )‖Ax − Ay‖q

+(1 − βn)αnM1.

By the fact that ar − br ≤ rar−1(a − b), ∀r ≥ 1, we get
(1 − βn)(1 − γn)λn(qβ − cqλ

q−1
n )‖Ax − Ay‖q

≤ ‖xn − p‖q − ‖xn+1 − p‖q + (1 − βn)αnM1

≤ q‖xn − p‖q−1
(

‖xn − p‖ − ‖xn+1 − p‖
)

+ (1 − βn)αnM1

≤ q‖xn − p‖q−1‖xn − xn+1‖ + (1 − βn)αnM1.

From 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , the conditions (C1)-(C3), (C6) and (3.5), we conclude that

lim
n→∞

‖Axn − Ap‖ = 0. (3.6)

From Proposition 2.1 (ii) and Lemma 2.6, we also have

‖zn − p‖2 = ‖QC(xn − λnAxn) − QC(p − λnAp)‖2

≤
〈

(xn − λnAxn) − (p − λnAp), J(zn − p)
〉

=
〈

(xn − p) − λn(Axn − Ap), J(zn − p)
〉

=
〈

xn − p, J(zn − p)
〉

− λn

〈

Axn − Ap, J(zn − p)
〉

≤
1

2

[

‖xn − p‖2 + ‖zn − p‖2 − g‖xn − zn‖
]

+ λn‖Axn − Ap‖‖zn − p‖.

So, we get

‖zn − p‖2 ≤ ‖xn − p‖2 − g‖xn − zn‖ + 2λn‖Axn − Ap‖‖zn − p‖.

By Lemma 2.8, it follows that

‖yn − p‖2 = ‖QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

− p‖2

≤ ‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

+ αn

(

γL1xn − µL2S(µn)zn

)

‖2

≤ ‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

‖2

+2αn

〈

γL1xn − µL2S(µn)zn, J
(

γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

+αn

(

γL1xn − µL2S(µn)zn

))〉

≤ γn‖xn − p‖2 + (1 − γn)‖zn − p‖2 + αnM2

≤ γn‖xn − p‖2 + (1 − γn)
[

‖xn − p‖2 − g‖xn − zn‖

+2λn‖Axn − Ap‖‖zn − p‖
]

+ αnM2

= ‖xn − p‖2 − (1 − γn)g‖xn − zn‖ + 2(1 − γn)λn‖Axn − Ap‖‖zn − p‖

+αnM2,
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where

M2 = sup
n≥0

{

2
〈

γL1xn − µL2S(µn)zn, J
(

γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

+αn

(

γL1xn − µL2S(µn)zn

))〉

}

< ∞.

We obtain

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1 − βn)‖S(µn)yn − p‖2

≤ βn‖xn − p‖2 + (1 − βn)‖yn − p‖2

≤ βn‖xn − p‖2 + (1 − βn)
[

‖xn − p‖2 − (1 − γn)g‖xn − zn‖

+2(1 − γn)λn‖Axn − Ap‖‖zn − p‖ + αnM2

]

= ‖xn − p‖2 − (1 − βn)(1 − γn)g‖xn − zn‖

+2(1 − βn)(1 − γn)λn‖Axn − Ap‖‖zn − p‖ + (1 − βn)αnM2.

Then we get

(1 − γn)g‖xn − zn‖ ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+2(1 − βn)(1 − γn)λn‖Axn − Ap‖‖zn − p‖ + (1 − βn)αnM2

≤ ‖xn − xn+1‖
(

‖xn − p‖ + ‖xn+1 − p‖
)

+2(1 − βn)(1 − γn)λn‖Axn − Ap‖‖zn − p‖ + (1 − βn)αnM2.

By the conditions (C1)-(C3), (C6), (3.5) and (3.6), we have

lim
n→∞

g(‖xn − zn‖) = 0.

It follows from the property of g that

lim
n→∞

‖xn − zn‖ = 0. (3.7)

Similar to the proof of (3.7), we start by using Lemma 2.5 and Lemma 2.8

‖yn − p‖2 = ‖QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

− p‖2

≤ ‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

+ αn

(

γL1xn − µL2S(µn)zn

)

‖2

≤ ‖γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

‖2

+2αn

〈

γL1xn − µL2S(µn)zn, J
(

γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

+αn

(

γL1xn − µL2S(µn)zn

))〉

≤ γn‖xn − p‖2 + (1 − γn)‖S(µn)zn − p‖2

−γn(1 − γn)g(‖xn − S(µn)zn‖) + αnM2

≤ γn‖xn − p‖2 + (1 − γn)‖zn − p‖2

−γn(1 − γn)g(‖xn − S(µn)zn‖) + αnM2

≤ γn‖xn − p‖2 + (1 − γn)‖xn − p‖2

−γn(1 − γn)g(‖xn − S(µn)zn‖) + αnM2

= ‖xn − p‖2 − γn(1 − γn)g(‖xn − S(µn)zn‖) + αnM2,

where

M2 = sup
n≥0

{

2
〈

γL1xn − µL2S(µn)zn, J
(

γn(xn − p) + (1 − γn)
(

S(µn)zn − p
)

+αn

(

γL1xn − µL2S(µn)zn

))〉

}

< ∞.

We obtain

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1 − βn)‖S(µn)yn − p‖2

≤ βn‖xn − p‖2 + (1 − βn)‖yn − p‖2

≤ βn‖xn − p‖2 + (1 − βn)
[

‖xn − p‖2

−γn(1 − γn)g(‖xn − S(µn)zn‖) + αnM2

]
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= ‖xn − p‖2 − (1 − βn)γn(1 − γn)g(‖xn − S(µn)zn‖) + (1 − βn)αnM2.

Then we get

(1 − βn)γn(1 − γn)g(‖xn − S(µn)zn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + (1 − βn)αnM2

≤ ‖xn − xn+1‖
(

‖xn − p‖ + ‖xn+1 − p‖
)

+(1 − βn)αnM2.

By the conditions (C1),(C3),(C6) and (3.5), we have

lim
n→∞

g(‖xn − S(µn)zn‖) = 0.

It follows from the property of g that

lim
n→∞

‖xn − S(µn)zn‖ = 0. (3.8)

Since S(µn) is a nonexpansive and from the proof of Lemma 2.12, we get QCS(µn)zn = S(µn)zn and
observe that
‖yn − S(µn)zn‖

=
∥

∥QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

− S(µn)zn

∥

∥

≤
∥

∥

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

− S(µn)zn

∥

∥

=
∥

∥αn

(

γL1xn − µL2S(µn)zn

)

+ γn(xn − S(µn)zn)
∥

∥

≤ αn‖γL1xn − µL2S(µn)zn‖ + γn‖xn − S(µn)zn‖.

It follows from the conditions (C1), (C6) and (3.8), we get

lim
n→∞

‖yn − S(µn)zn‖ = 0. (3.9)

Since

‖xn − S(µn)xn‖ ≤ ‖xn − S(µn)zn‖ + ‖S(µn)zn − S(µn)xn‖

≤ ‖xn − S(µn)zn‖ + ‖zn − xn‖,

we have

lim
n→∞

‖xn − S(µn)xn‖ = 0.

Now, we show that z ∈ F := F (S) ∩ V I(C, A). We can choose a sequence {xnk
} of {xn} such

that {xnk
} is bounded and there exists a subsequence {xnkj

} of {xnk
} which converges weakly to z.

Without loss of generality, we can assume that xnk
⇀ z.

(I) First, we show that z ∈ F (S). Let µnk
≥ 0 such that µnk

→ 0 and
‖S(µnk

)xnk
−xnk

‖

µnk

→ 0, k → ∞.

Fix s > 0, we can notice that
‖xnk

− S(s)z‖

≤

[s/µnk
]−1

∑

i=0

∥

∥S
(

(i + 1)µnk

)

xnk
− S(iµnk

)xnk

∥

∥

+
∥

∥S
(

[s/µnk
]µk

)

xnk
− S

(

[s/µnk
]µnk

)

z
∥

∥

+
∥

∥S
(

[s/µnk
]µnk

)

z − S(s)z
∥

∥

≤ [s/µnk
]‖S(µnk

)xnk
− xnk

‖ + ‖xnk
− z‖ +

∥

∥S
(

s − [s/µnk
]µnk

)

z − z
∥

∥

≤ s
‖S(µnk

)xnk
− xnk

‖

µnk

+ ‖xnk
− z‖ +

∥

∥S
(

s − [s/µnk
]µnk

)

z − z
∥

∥

≤ s
‖S(µnk

)xnk
− xnk

‖

µnk

+ ‖xnk
− z‖ + max{‖S(µ)z − z‖ : 0 ≤ µ ≤ µnk

}.

For all k ∈ N, we have

lim sup
k→∞

‖xnk
− S(s)z‖ ≤ lim sup

k→∞
‖xnk

− z‖.

Since a Banach space E with a weakly sequentially continuous duality mapping satisfies the Opial’s
condition, this implies S(s)z = z.
(II) Next, we show that z ∈ V I(C, A). From the assumption, we see that the control sequence {λnk

}
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is bounded. So, there exists a subsequence {λnkj
} converges to λ0. We may assume, without loss of

generality, that λnk
⇀ λ0. Observe that

‖QC(xnk
− λ0Axnk

) − xnk
‖ ≤ ‖QC(xnk

− λ0Axnk
) − ynk

‖ + ‖ynk
− xnk

‖

≤ ‖(xnk
− λ0Axnk

) − (xnk
− λnk

Axnk
)‖

+‖xnk
− S(µnk

)znk
‖ + ‖S(µnk

)znk
− ynk

‖

≤ M‖λnk
− λ0‖ + ‖xnk

− S(µnk
)znk

‖

+‖S(µnk
)znk

− ynk
‖,

where M is as appropriate constant such that M ≥ supn≥1{‖Axn‖}. It follows from (3.8), (3.9) and
λnk

⇀ λ0 that
lim

k→∞
‖QC(xnk

− λ0Axnk
) − xnk

‖ = 0.

We know that QC(I −λ0A) is nonexpansive and it follows from Lemma 2.4 that z ∈ F (QC(I −λ0A)).
By using Lemma 2.3, we obtain that z ∈ F (QC(I − λ0A)) = V I(C, A).
Therefore, from (I) and (II), we conclude that z ∈ F := F (S) ∩ V I(C, A).

Next, we show that lim supn→∞〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉 ≤ 0, where x∗ is the solution of the
variational inequality (1.1). Since the Banach space E has a weakly sequentially continuous generalized
duality mapping Jq : E → E∗ and ynk

⇀ z, we obtain that
lim supn→∞〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉

= lim
k→∞

〈γL1x
∗ − µL2x

∗, Jq(ynk
− x∗)〉

= 〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0. (3.10)

Finally, we show that {xn} converges strongly to x∗. Setting un = αnγL1xn + γnxn + ((1 − γn)I −
αnµL2)S(µn)zn, ∀n ≥ 0, it follows from Lemma 2.11, 2.13 and 2.14 that

‖yn − x∗‖q = 〈QCun − un, Jq(yn − x∗)〉 + 〈un − x∗, Jq(yn − x∗)〉

≤ 〈un − x∗, Jq(yn − x∗)〉

= 〈[(1 − γn)I − αnµL2][S(µn)zn − x∗], Jq(yn − x∗)〉

+αn〈γL1xn − µL2x
∗, Jq(yn − x∗)〉 + γn〈xn − x∗, Jq(yn − x∗)〉

≤ (1 − γn − αnτ)‖S(µn)zn − x∗‖‖yn − x∗‖q−1

+γn‖xn − x∗‖‖yn − x∗‖q−1 + αn〈γL1xn − γL1x
∗, Jq(yn − x∗)〉

+αn〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉

≤ (1 − γn − αnτ)‖xn − x∗‖‖yn − x∗‖q−1

+γn‖xn − x∗‖‖yn − x∗‖q−1 + αnγL‖xn − x∗‖‖yn − x∗‖q−1

+αn〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉

≤ [1 − αn(τ − γL)]‖xn − x∗‖‖yn − x∗‖q−1

+αn〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉

≤ [1 − αn(τ − γL)]
[1

q
‖xn − x∗‖q +

q − 1

q
‖yn − x∗‖q

]

+αn〈γL1x
∗ − µL2x

∗, Jq(yn − x∗)〉,

which implies that

‖yn − x∗‖q ≤
1 − αn(τ − γL)

1 + (q − 1)αn(τ − γL)
‖xn − x∗‖q

+
qαn

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉

≤ [1 − αn(τ − γL)]‖xn − x∗‖q

+
qαn

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉.

Therefore,
‖xn+1 − x∗‖q

≤ βn‖xn − x∗‖q + (1 − βn)‖S(µn)yn − x∗‖q
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≤ βn‖xn − x∗‖q + (1 − βn)‖yn − x∗‖q

≤ βn‖xn − x∗‖q + (1 − βn)

[

[1 − αn(τ − γL)]‖xn − x∗‖q

+
qαn

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉

]

= [1 − αn(τ − γL)(1 − βn)]‖xn − p‖q

+
qαn(1 − βn)

1 + (q − 1)αn(τ − γL)
〈γL1x

∗ − µL2x
∗, Jq(yn − x∗)〉. (3.11)

Now, from (C1), (3.10) and applying Lemma 2.10 to (3.11), we get ‖xn−x∗‖ → 0 as n → ∞. Therefore,
the sequence {xn} converges strongly to x∗ ∈ F . The proof is complete. �

Corollary 3.2. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a 2-
uniformly smooth and uniformly convex Banach space E which admits a weakly sequentially contin-
uous generalized duality mapping J : E → E∗ with the best smooth constant K. Let QC be a sunny
nonexpansive retraction from E onto C, A : C → E be an β-inverse-strongly accretive operator,
S = {S(s) : s ≥ 0} be a nonexpansive semigroup from C into itself, L1 : C → E be a L-Lipschitzian
mapping with constant L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly accretive op-
erator with constant κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such that

{λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < η
K2κ2 , 0 < a ≤ λn ≤ b < β

K2 , 0 ≤ γL < τ where τ = µ(η − K2µκ2) and
F := F (S) ∩ V I(C, A) 6= ∅. Let {xn} be the sequences defined by x1 ∈ C and







zn = QC(xn − λnAxn)
yn = QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)S(µn)zn

]

,
xn+1 = βnxn + (1 − βn)S(µn)yn,

which satisfy the conditions (C1)-(C6) in Theorem 3.1. Then {xn} converges strongly to x∗ ∈ F which
also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, J(z − x∗)〉 ≤ 0, ∀z ∈ F.

Corollary 3.3. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a q-
uniformly smooth and uniformly convex Banach space E which admits a weakly sequentially continuous
generalized duality mapping Jq : E → E∗. Let QC be a sunny nonexpansive retraction from E onto
C, A : C → E be an β-inverse-strongly accretive operator, S = {S(s) : s ≥ 0} be a nonexpansive
semigroup from C into itself, L1 : C → E be a L-Lipschitzian mapping with constant L ≥ 0 and
L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constant κ, η > 0. Assume

{αn}, {βn}, {γn}, {λn} ⊂ (0, 1), {µn} ⊂ (0,∞) such that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1

where cq is a positive real number, 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η −
cqµq−1κq

q )

and F := F (S) ∩ V I(C, A) 6= ∅. Let {xn} be the sequences defined by x1 ∈ C and










zn = QC(xn − λnAxn)

yn = QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)
1
tn

∫ tn

0
S(s)znds

]

,

xn+1 = βnxn + (1 − βn) 1
tn

∫ tn

0
S(s)ynds,

which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.1 and assume that

lim
n→∞

sup
x∈C̃

∥

∥

∥

∥

1

tn+1

∫ tn+1

0

S(s)xds −
1

tn

∫ tn

0

S(s)xds

∥

∥

∥

∥

= 0,

C̃ bounded subset of C, limn→∞ µn = ∞ and limn→∞
µn

µn+1
= 1. Then {xn} converges strongly to

x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0, ∀z ∈ F.

Corollary 3.4. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a q-
uniformly smooth and uniformly convex Banach space E which admits a weakly sequentially continuous
generalized duality mapping Jq : E → E∗. Let QC be a sunny nonexpansive retraction from E onto C,
A : C → E be an β-inverse-strongly accretive operator, L1 : C → E be a L-Lipschitzian mapping with
constant L ≥ 0 and L2 : C → E be a κ-Lipschitzian and η-strongly accretive operator with constant
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κ, η > 0. Assume {αn}, {βn}, {γn}, {λn} ⊂ (0, 1) such that {λn} ⊂ [a, b] ⊂ (0, 1), 0 < µ < ( qη
cqκq )

1
q−1

where cq is a positive real number, 0 < a ≤ λn ≤ b < ( qβ
cq

)
1

q−1 , 0 ≤ γL < τ where τ = µ(η − cqµq−1κq

q )

and F := V I(C, A) 6= ∅. Let {xn} be the sequences defined by x1 ∈ C and






zn = QC(xn − λnAxn)
yn = QC

[

αnγL1xn + γnxn + ((1 − γn)I − αnµL2)zn

]

,
xn+1 = βnxn + (1 − βn)yn,

which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.1. Then {xn} converges strongly to
x∗ ∈ F which also solves the following variational inequality:

〈γL1x
∗ − µL2x

∗, Jq(z − x∗)〉 ≤ 0, ∀z ∈ F.

Proof. Taking µn = 0 in Theorem 3.1, we can conclude the desired conclusion easily. The proof is
complete. �

4. Numerical Example

In this section, we illustrate a real numerical example by using main theorem.

Example 4.1. Let E = R, C = [0, 1], q = 2, jq = I, γ = µ =
1

2
, αn = µn =

1

3n
, βn =

n + 1

2n
,

γn =
2n − 1

7n
, λn =

6n − 1

14n
and x1 = 1 which satisfy the conditions (C1) − (C6) in Theorem 3.1. We

define the mappings as follows: QCx =

{ x

|x|
, x ∈ R − C

x, x ∈ C
, (S(s))(x) = xe−s, Ax =

x

2
, L1x = x2 and

L2x =
1

3
(x2 +2x), where A is

1

2
-inverse strongly accretive, L1 is 1-Lipschitzian and L2 is 1-Lipschitzian

and
2

3
-strongly accretive. Then the sequence



























zn = xn

(

22n + 1

28n

)

,

yn =
xn

n

(

xn

6
+

2n − 1

7

)

+
zne−1/3n

n

(

5n + 1

7n
−

zne−1/3n + 2

18

)

,

xn+1 =
n + 1

2n
xn +

n − 1

2n
yne−1/3n

converges strongly to 0 shown in Figure 1 and Table 1.

Figure 1. The iteration process.
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Table 1. The value of sequence {xn}

Iteration step (n) Sequence value (xn) Iteration step (n) Sequence value (xn)
1 1 10 0.456821
2 1 20 0.182023
3 0.915366 50 0.013817
4 0.828039 100 0.000222
5 0.747896 168 0.0000009

Example 4.2. Let E = R
3 and an inner product 〈·, ·〉 : R

3 × R
3 → R be defined by

〈x,y〉 = x · y = x1 · y1 + x2 · y2 + x3 · y3, ∀x = (x1, x2, x3),y = (y1, y2, y3)

and the usual norm ‖ · ‖ : R
3 → R be defined by

‖x‖ =
√

(x1)2 + (x2)2 + (x3)2.

Let C =
{

x ∈ R
3
∣

∣‖x‖ ≤ 1
}

, γ = µ =
1

2
, αn = µn =

1

3n
, βn =

n + 1

2n
, γn =

2n − 1

7n
, λn =

6n − 1

14n
and

x1 = (1, 2, 3) which satisfy the conditions (C1) − (C6) in Theorem 3.1. We define the mappings as

follows: QCx =

{ x

‖x‖
,x /∈ C

x,x ∈ C
, (S(s))(x) = xe−s, Ax =

x

2
, L1x = x2 and L2x =

1

3
(x2 + 2x), For

n = 1, . . . , 6, we have the sequence


























zn =
Zn

‖Zn‖
,

yn =
Yn

‖Yn‖
,

xn+1 =
n + 1

2n
xn +

n − 1

2n
yne−1/3n,

where

Zn = xn

(

22n + 1

28n

)

,

Yn =
xn

n

(

xn

6
+

2n − 1

7

)

+
zne−1/3n

n

(

5n + 1

7n
−

zne−1/3n + 2

18

)

.

For n = 7, we have the sequence


























zn = xn

(

22n + 1

28n

)

,

yn =
Yn

‖Yn‖
,

xn+1 =
n + 1

2n
xn +

n − 1

2n
yne−1/3n,

where

Yn =
xn

n

(

xn

6
+

2n − 1

7

)

+
zne−1/3n

n

(

5n + 1

7n
−

zne−1/3n + 2

18

)

.

For n = 8, 9, 10, . . ., we have the sequence


























zn = xn

(

22n + 1

28n

)

,

yn =
xn

n

(

xn

6
+

2n − 1

7

)

+
zne−1/3n

n

(

5n + 1

7n
−

zne−1/3n + 2

18

)

,

xn+1 =
n + 1

2n
xn +

n − 1

2n
yne−1/3n.

Then the sequence converges strongly to 0 = (0, 0, 0), shown in Figure 2 and Table 2.
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Figure 2. The iteration process.

Table 2. The value of sequence {xn}

n x1
n x2

n x3
n n x1

n x2
n x3

n

1 1 2 3 10 0.229555 0.480061 0.753976
2 1 2 3 20 0.090760 0.191436 0.303513
3 0.794057 1.603757 2.429100 50 0.006872 0.014536 0.023119
4 0.598144 1.220303 1.867191 100 0.000110 0.000233 0.000371
5 0.457286 0.940376 1.450720 174 0.0000003 0.0000006 0.0000009
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Abstract
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1. Introduction

Let E be a real Banach space, C be a nonempty closed convex subset of E and E∗ be the dual space of
E with norm ‖ · ‖ and 〈·, ·〉 pairing between E and E∗.

• The duality mapping J : E→ 2E∗
is defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2, ‖x∗‖ = ‖x‖

}

for all x ∈ E. It is well known that if E is a Hilbert space then J is the identity mapping, and if E is
smooth then J is single-valued.
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• A mapping T : C→ C is called a nonexpansive, if

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ C

and F(T) = {x ∈ C : Tx = x} is the set of fixed points of T .

• A mapping f : C→ C is called a contraction, if there exists α ∈ (0, 1) such that

‖f(x) − f(y)‖ 6 α‖x− y‖, ∀x,y ∈ C.

• A family S = {S(s) : 0 6 s < ∞} of mappings of C into itself is called a nonexpansive semigroup on C
if it satisfies the following conditions:

(i) S(0)x = x for all x ∈ C;

(ii) S(s+ t) = S(s)S(t) for all s, t > 0;

(iii) ‖S(s)x− S(s)y‖ 6 ‖x− y‖ for all x,y ∈ C and s > 0;

(iv) for each x ∈ C, the mapping S(·)x from [0, ∞) into C is continuous.

S, i.e., F(S) = {x ∈ C : S(s)x = x, ∀s > 0} is a common fixed point set of a nonexpansive semigroup.
It is easy to see that F(S) is closed and convex (see also [1, 2, 3, 4, 5, 6, 7, 8]).

Definition 1.1. A mapping ψ : R
+ → R

+ is called an L-function if ψ(0) = 0,ψ(t) > 0, ∀t > 0 and for every
s > 0 there exists u > s such that

ψ(t) 6 s, for t ∈ [s,u].

Note that every L-function ψ satisfies ψ(t) < t, ∀t > 0.

Definition 1.2. Let (X,d) be a matric space. A mapping f : X→ X is said to be:
(i) (ψ, L)-contraction if ψ : R

+ → R
+ is an L-function and d(f(x), f(y)) < ψ(d(x,y)) for all x,y ∈ X with

x 6= y;
(ii) Meir-Keeler type mapping if for each ǫ > 0 there exists δ = δ(ǫ) > 0 such that for each x,y ∈ X with
d(x,y) < ǫ+ δ we have d(f(x), f(y)) < ǫ.

Theorem 1.3. ([9]) Let (X,d) be a metric space and f : X → X a mapping. Then the following assertions are
equivalent:
(i) f is a Meir-Keeler type mapping;
(ii) there exists an L-function ψ : R

+ → R
+ such that f is a (ψ, L)−contraction.

Proposition 1.4. ([10]) Let C be a convex subset of a Banach space E. Let f : C → C be a Meir-Keeler type
mapping. Then for each ǫ > 0 there exists r ∈ (0, 1) such that for each x,y ∈ C with ‖x− y‖ > ǫ, we have

‖f(x) − f(y)‖ 6 r‖x− y‖.

Now, a Meir-Keeler type mapping or (ψ, L)−contraction is called generalized contraction mapping.
We suppose that the function ψ based on the definition of the (ψ, L)−contraction is continuous and
strictly increasing and lim

t→∞
η(t) = ∞, where η(t) = t−ψ(t), t ∈ R

+. In consequence, we have that η is a

bijection on R
+.

In 2015, the viscosity implicit midpoint theorem in Hilbert spaces was introduced by Xu et al. [11]:

xn+1 = αnf(xn) + (1 − αn)T

(

xn + xn+1

2

)

,n > 0. (1.1)

In the same year, Ke et al. [12] introduced the two viscosity implicit midpoint theorem in Hilbert spaces:

xn+1 = αnQ(xn) + (1 − αn)T(snxn + (1 − sn)xn+1), (1.2)
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and
xn+1 = αnxn +βnQ(xn) + γnT(snxn + (1 − sn)xn+1). (1.3)

One year later, Yan et al. [13] introduced an implicit iteration for a generalized contraction mapping
in Banach space:

xn+1 = αnxn + βnf(xn) + γnT(snxn + (1 − sn)xn+1). (1.4)

They proved the strong convergence theorems.
Motivated and inspired by the idea of Yan et al. [13]. We introduce the new implicit iterative scheme

and the new implicit midpoint rule with viscosity approximation method based on a generalized contrac-
tion mapping for finding solutions of fixed point problems for nonexpansive semigroup. We shall prove
the strong convergence theorems in uniformly convex and uniformly smooth Banach space under some
parameters controlling conditions. Our results extend and improve the recent results of Yan et al. [13]
and other authors.

2. Preliminaries

According to our framework throughout this research, we first preview some definitions involving a
Banach space E as follows. Let U = {x ∈ E : ‖x‖ = 1}.

• E is said to be uniformly convex if, for any ǫ ∈ (0, 2], there exists δ > 0 such that, for any x,y ∈ U,

‖x− y‖ > ǫ implies

∥

∥

∥

∥

x+ y

2

∥

∥

∥

∥

6 1 − δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex.

• E is said to be smooth if lim
t→0

‖x+ ty‖− ‖x‖

t
exists for all x,y ∈ U.

It is also said to be uniformly smooth if the limit is attained uniformly for all x,y ∈ U. The modulus of
smoothness of E is defined by

ρ(τ) = sup

{
1

2
(‖x+ y‖+ ‖x− y‖) − 1 : x,y ∈ E, ‖x‖ = 1, ‖y‖ = τ

}

,

where ρ : [0, ∞) → [0, ∞) is a function.

It is known that E is uniformly smooth if and only if lim
τ→0

ρ(τ)

τ
= 0.

A Banach space E is said to satisfy Opial’s condition if for any sequence {xn} in E, xn ⇀ x(n → ∞)

implies
lim sup

n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ E with x 6= y.

By [14, Theorem 1], it is well known that if E admits a weakly sequentially continuous duality mapping,
then E satisfies Opial’s condition, and E is smooth.

The following lemmas are very useful for proving our main results.

Lemma 2.1. ([15]) Let {xn} and {yn} be bounded sequences in a Banach space X and let {βn} be a sequence in [0, 1]

with 0 < lim infn→∞ βn 6 lim supn→∞ βn < 1. Suppose xn+1 = (1 − βn)yn + βnxn for all integers n > 0
and lim supn→∞(‖yn+1 − yn‖− ‖xn+1 − xn‖) 6 0. Then, limn→∞ ‖yn − xn‖ = 0.

Lemma 2.2. ([16]) Let C be a nonempty closed and convex subset of a uniformly smooth Banach space E. Let
T : C → C be a nonexpansive mapping such that F(T) 6= ∅ and f : C → C be a generalized contraction mapping.
Then {xt} defined by xt = tf(xt) + (1 − t)Txt for t ∈ (0, 1), converges strongly to x∗ ∈ F(T) as t → 0, which
solves the variational inequality:

〈f(x∗) − x∗, J(z− x∗)〉 6 0, ∀z ∈ F(T).
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Lemma 2.3. ([16]) Let C be a nonempty closed and convex subset of a uniformly smooth Banach space E. Let
T : C → C be a nonexpansive mapping such that F(T) 6= ∅ and f : C → C be a generalized contraction mapping.
Assume that {xt} defined by xt = tf(xt) + (1 − t)Txt, converges strongly to x∗ ∈ F(T) as t → 0. Suppose that
{xn} is bounded sequence such that xn − Txn → 0 as n→ ∞. Then

lim sup
n→∞

〈f(x∗) − x∗, J(xn − x∗)〉 6 0.

Lemma 2.4. ([17]) Assume {an} is a sequence of nonnegative real numbers such that

an+1 6 (1 −αn)an + δn, n > 0

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1)
∑∞

n=1 αn = ∞

(2) lim supn→∞
δn

αn
6 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and S = {T(t) : t > 0} be a nonexpansive semigroup
from C into itself such that F(S) 6= 0. Let {xn} be the sequences defined by x1 ∈ C and






zn = λnxn + (1 − λn)xn+1,
yn = δnf(xn) + (1 − δn)zn,
xn+1 = αnxn + βnf(xn) + γnT(µn)yn,

(3.1)

where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in (0, 1). The following conditions are satisfied:

(i) αn + βn + γn = 1;

(ii) lim
n→∞

βn = lim
n→∞

δn = lim
n→∞

µn = lim
n→∞

|αn+1 − αn| = lim
n→∞

|λn+1 − λn| = 0 and

lim
n→∞

sup
x∈C̃

‖T(µn+1)x− T(µn)x‖ = 0, C̃ bounded subset of C;

(iii) 0 < lim inf
n→∞

αn 6 lim sup
n→∞

αn < 1;

(iv)
∞∑

n=0

βn = ∞ for all n > 1.

Then {xn} converges strongly to x∗ ∈ F(S) which also solves the following variational inequality:

〈(I− f)x∗, J(z− x∗)〉 6 0, ∀z ∈ F(S). (3.2)

Proof. First of all, we prove that {xn} is bounded. Let p ∈ F(S), we have

‖yn − p‖ 6 δn‖f(xn) − p‖+ (1 − δn)‖zn − p‖

6 δn‖f(xn) − f(p)‖+ δn‖f(p) − p‖+ (1 − δn)‖zn − p‖

6 δnψ‖xn − p‖+ δn‖f(p) − p‖+ (1 − δn) [λn‖xn − p‖+ (1 − λn)‖xn+1 − p‖]

= [δnψ+ (1 − δn)λn] ‖xn − p‖+ δn‖f(p) − p‖+ (1 − δn)(1 − λn)‖xn+1 − p‖

and

‖xn+1 − p‖ 6 αn‖xn − p‖+ βn‖f(xn) − p‖+ γn‖T(µn)yn − p‖

6 αn‖xn − p‖+ βn‖f(xn) − f(p)‖+βn‖f(p) − p‖+ γn‖yn − p‖

6 αn‖xn − p‖+ βnψ‖xn − p‖+βn‖f(p) − p‖

+γn {[δnψ+ (1 − δn)λn] ‖xn − p‖+ δn‖f(p) − p‖+ (1 − δn)(1 − λn)‖xn+1 − p‖}



C. Jaiboon, S. Plubtieng, P. Katchang, J. Nonlinear Sci. Appl., ? (201?), 1–? 5

= [αn + βnψ+ γnδnψ+ γn(1 − δn)λn] ‖xn − p‖+ (βn + γnδn)‖f(p) − p‖

+γn(1 − δn)(1 − λn)‖xn+1 − p‖

= [1 − γn(1 − δn)(1 − λn) − (βn + γnδn)(1 −ψ)] ‖xn − p‖+ (βn + γnδn)‖f(p) − p‖

+γn(1 − δn)(1 − λn)‖xn+1 − p‖

= [1 − γn(1 − δn)(1 − λn) − (βn + γnδn)η] ‖xn − p‖+ (βn + γnδn)ηη−1‖f(p) − p‖

+γn(1 − δn)(1 − λn)‖xn+1 − p‖.

‖xn+1 − p‖ 6 αn‖xn − p‖+ βn‖f(xn) − p‖+ γn‖T(µn)yn − p‖

6 αn‖xn − p‖+ βn‖f(xn) − f(p)‖+βn‖f(p) − p‖+ γn‖yn − p‖

6 αn‖xn − p‖+ βnψ‖xn − p‖+βn‖f(p) − p‖

+γn {[δnψ+ (1 − δn)λn] ‖xn − p‖+ δn‖f(p) − p‖+ (1 − δn)(1 − λn)‖xn+1 − p‖}

= [αn +βnψ+ γnδnψ+ γn(1 − δn)λn] ‖xn − p‖+ (βn + γnδn)‖f(p) − p‖

+γn(1 − δn)(1 − λn)‖xn+1 − p‖

= [1 − γn(1 − δn)(1 − λn) − (βn + γnδn)(1 −ψ)] ‖xn − p‖+ (βn + γnδn)‖f(p) − p‖

+γn(1 − δn)(1 − λn)‖xn+1 − p‖

= [1 − γn(1 − δn)(1 − λn) − (βn + γnδn)η] ‖xn − p‖+ (βn + γnδn)ηη−1‖f(p) − p‖

+γn(1 − δn)(1 − λn)‖xn+1 − p‖.

It follows that

‖xn+1 − p‖ 6

[

1 −
(βn + γnδn)η

1 − γn(1 − δn)(1 − λn)

]

‖xn − p‖+
(βn + γnδn)η

1 − γn(1 − δn)(1 − λn)
η−1‖f(p) − p‖.

By induction, we conclude that

‖xn − p‖ 6 max
{
‖x1 − p‖,η−1‖f(p) − p‖

}
, ∀n > 0.

This implies that {xn} is bounded, so are {f(xn)}, {yn}, {T(µn)yn} and {zn}.
Next, we will show that limn→∞ ‖xn+1 − xn‖ = 0 and we observe that

‖zn+1 − zn‖ = ‖(λn+1xn+1 + (1 − λn+1)xn+2) − (λnxn + (1 − λn)xn+1)‖

= ‖λn+1xn+1 − λn+1xn + λn+1xn + (1 − λn+1)xn+2

−(1 − λn+1)xn+1 + (1 − λn+1)xn+1 − λnxn − (1 − λn)xn+1‖

= ‖λn+1(xn+1 − xn) + (λn+1 − λn)xn + (1 − λn+1)(xn+2 − xn+1) + (λn − λn+1)xn+1‖

6 λn+1‖xn+1 − xn‖+ |λn+1 − λn|(‖xn‖+ ‖xn+1‖) + (1 − λn+1)‖xn+2 − xn+1‖,

‖yn+1 − yn‖ = ‖ (δn+1f(xn+1) + (1 − δn+1)zn+1) − (δnf(xn) + (1 − δn)zn) ‖

= ‖δn+1f(xn+1) − δn+1f(xn) + δn+1f(xn) + (1 − δn+1)zn+1

−(1 − δn+1)zn + (1 − δn+1)zn − δnf(xn) − (1 − δn)zn‖

= ‖δn+1(f(xn+1) − f(xn)) + (δn+1 − δn)f(xn) + (1 − δn+1)(zn+1 − zn)

+(δn − δn+1)zn‖

6 δn+1‖f(xn+1) − f(xn)‖+ |δn+1 − δn|(‖f(xn)‖+ ‖zn‖) + (1 − δn+1)‖zn+1 − zn‖

6 δn+1ψ‖xn+1 − xn‖+ |δn+1 − δn|(‖f(xn)‖+ ‖zn‖) + (1 − δn+1)[λn+1‖xn+1 − xn‖

+|λn+1 − λn|(‖xn‖+ ‖xn+1‖) + (1 − λn+1)‖xn+2 − xn+1‖]

= (δn+1ψ+ (1 − δn+1)λn+1)‖xn+1 − xn‖+ |δn+1 − δn|(‖f(xn)‖+ ‖zn‖)

+(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖) + (1 − δn+1)(1 − λn+1)‖xn+2 − xn+1‖,



C. Jaiboon, S. Plubtieng, P. Katchang, J. Nonlinear Sci. Appl., ? (201?), 1–? 6

and

‖xn+2 − xn+1‖ = ‖ (αn+1xn+1 +βn+1f(xn+1) + γn+1T(µn+1)yn+1)

− (αnxn +βnf(xn) + γnT(µn)yn) ‖

= ‖αn+1xn+1 −αn+1xn +αn+1xn + βn+1f(xn+1) − βn+1f(xn) +βn+1f(xn)

+γn+1T(µn+1)yn+1 − γn+1T(µn)yn + γn+1T(µn)yn − αnxn − βnf(xn)

−γnT(µn)yn‖

= ‖αn+1(xn+1 − xn) + βn+1(f(xn+1) − f(xn)) + γn+1(T(µn+1)yn+1 − T(µn)yn)

+(αn+1 −αn)xn + (βn+1 − βn)f(xn) + (γn+1 − γn)T(µn)yn‖

6 αn+1‖xn+1 − xn‖+βn+1‖f(xn+1) − f(xn)‖+ γn+1‖T(µn+1)yn+1 − T(µn)yn‖

+|αn+1 −αn|‖xn‖+ |βn+1 − βn|‖f(xn)‖+ |γn+1 − γn|‖T(µn)yn‖

6 αn+1‖xn+1 − xn‖+βn+1ψ‖xn+1 − xn‖

+γn+1 (‖T(µn+1)yn+1 − T(µn+1)yn‖+ ‖T(µn+1)yn − T(µn)yn‖)

+|αn+1 −αn|‖xn‖+ |βn+1 − βn|‖f(xn)‖+ |γn+1 − γn|‖T(µn)yn‖

= (αn+1 + βn+1ψ)‖xn+1 − xn‖+ γn+1 sup
y∈{yn}

‖T(µn+1)y− T(µn)y‖

+|αn+1 −αn|‖xn‖+ |βn+1 − βn|‖f(xn)‖+ |γn+1 − γn|‖T(µn)yn‖

+γn+1‖yn+1 − yn‖

6 (αn+1 + βn+1ψ)‖xn+1 − xn‖+ γn+1 sup
y∈{yn}

‖T(µn+1)y− T(µn)y‖

+|αn+1 −αn|‖xn‖+ |βn+1 − βn|‖f(xn)‖+ |γn+1 − γn|‖T(µn)yn‖

+γn+1[(δn+1ψ+ (1 − δn+1)λn+1)‖xn+1 − xn‖+ |δn+1 − δn|(‖f(xn)‖+ ‖zn‖)

+(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖) + (1 − δn+1)(1 − λn+1)‖xn+2 − xn+1‖]

= (αn+1 + βn+1ψ+ γn+1δn+1ψ+ γn+1(1 − δn+1)λn+1)‖xn+1 − xn‖

+γn+1 sup
y∈{yn}

‖T(µn+1)y− T(µn)y‖+ |αn+1 − αn|‖xn‖+ |βn+1 −βn|‖f(xn)‖

+|γn+1 − γn|‖T(µn)yn‖+ γn+1|δn+1 − δn|(‖f(xn)‖+ ‖zn‖)

+γn+1(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖)

+γn+1(1 − δn+1)(1 − λn+1)‖xn+2 − xn+1‖

= [1 − γn+1(1 − δn+1)(1 − λn+1) − (βn+1 + γn+1δn+1)η] ‖xn+1 − xn‖

+γn+1 sup
y∈{yn}

‖T(µn+1)y− T(µn)y‖+ |αn+1 − αn|‖xn‖+ |βn+1 −βn|‖f(xn)‖

+|γn+1 − γn|‖T(µn)yn‖+ γn+1|δn+1 − δn|(‖f(xn)‖+ ‖zn‖)

+γn+1(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖)

+γn+1(1 − δn+1)(1 − λn+1)‖xn+2 − xn+1‖.

It follows that

‖xn+2 − xn+1‖ 6

[

1 −
(βn+1 + γn+1δn+1)η

1 − γn+1(1 − δn+1)(1 − λn+1)

]

‖xn+1 − xn‖

+
γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖

+
|αn+1 − αn|

1 − γn+1(1 − δn+1)(1 − λn+1)
‖xn‖+

|βn+1 −βn|

1 − γn+1(1 − δn+1)(1 − λn+1)
‖f(xn)‖

+
|γn+1 − γn|

1 − γn+1(1 − δn+1)(1 − λn+1)
‖T(µn)yn‖
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+
|δn+1 − δn|γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)
(‖f(xn)‖+ ‖zn‖)

+
|λn+1 − λn|γn+1(1 − δn+1)

1 − γn+1(1 − δn+1)(1 − λn+1)
(‖xn‖+ ‖xn+1‖)

6

[

1 −
(βn+1 + γn+1δn+1)η

1 − γn+1(1 − δn+1)(1 − λn+1)

]

‖xn+1 − xn‖

+
γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖

+

[

|αn+1 −αn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|βn+1 − βn|

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|γn+1 − γn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|δn+1 − δn|γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|λn+1 − λn|γn+1(1 − δn+1)

1 − γn+1(1 − δn+1)(1 − λn+1)

]

M

where M = sup
n>1

{‖xn‖, ‖f(xn)‖+ ‖T(µn)yn‖, ‖f(xn)‖+ ‖zn‖, ‖xn‖+ ‖xn+1‖} < ∞.

Setting xn+1 = (1 −αn)wn +αnxn for all n > 1, we see that wn =
xn+1 −αnxn

1 −αn
, then we have

‖wn+1 −wn‖ =

∥

∥

∥

∥

xn+2 −αn+1xn+1

1 −αn+1
−
xn+1 −αnxn

1 −αn

∥

∥

∥

∥

=

∥

∥

∥

∥

βn+1f(xn+1) + γn+1T(µn+1)yn+1

1 − αn+1
−
βnf(xn) + γnT(µn)yn

1 − αn

∥

∥

∥

∥

=

∥

∥

∥

∥

βn+1f(xn+1) + γn+1T(µn+1)yn+1

1 − αn+1
−
βn+1f(xn)

1 −αn+1
+
βn+1f(xn)

1 −αn+1

−
γn+1T(µn)yn

1 − αn+1
+
γn+1T(µn)yn

1 −αn+1
−
βnf(xn) + γnT(µn)yn

1 − αn

∥

∥

∥

∥

=

∥

∥

∥

∥

βn+1

1 − αn+1
(f(xn+1) − f(xn)) +

γn+1

1 −αn+1
(T(µn+1)yn+1 − T(µn)yn)

+

(

βn+1

1 − αn+1
−

βn

1 − αn

)

f(xn) +

(

γn+1

1 − αn+1
−

γn

1 − αn

)

T(µn)yn

∥

∥

∥

∥

=

∥

∥

∥

∥

βn+1

1 − αn+1
(f(xn+1) − f(xn)) +

γn+1

1 −αn+1
(T(µn+1)yn+1 − T(µn)yn)

+

(

βn+1

1 − αn+1
−

βn

1 − αn

)

f(xn) +

(

βn

1 − αn
−

βn+1

1 −αn+1

)

T(µn)yn

∥

∥

∥

∥

6
βn+1

1 −αn+1
‖f(xn+1) − f(xn)‖+

γn+1

1 −αn+1
‖T(µn+1)yn+1 − T(µn)yn‖

+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 −αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)

6
βn+1ψ

1 −αn+1
‖xn+1 − xn‖+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 −αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)

+
γn+1

1 − αn+1
(‖T(µn+1)yn+1 − T(µn+1)yn‖+ ‖T(µn+1)yn − T(µn)yn‖)

6
βn+1ψ

1 −αn+1
‖xn+1 − xn‖+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 −αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)
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+
γn+1

1 − αn+1
‖yn+1 − yn‖+

γn+1

1 − αn+1
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖

6
βn+1ψ

1 − αn+1
‖xn+1 − xn‖+

γn+1

1 −αn+1
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖

+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 − αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)

+
γn+1

1 − αn+1
[(δn+1ψ+ (1 − δn+1)λn+1)‖xn+1 − xn‖+ |δn+1 − δn|(‖f(xn)‖+ ‖zn‖)

+(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖) + (1 − δn+1)(1 − λn+1)‖xn+2 − xn+1‖]

6
1

1 − αn+1
[βn+1ψ+ γn+1δn+1ψ+ γn+1(1 − δn+1)λn+1] ‖xn+1 − xn‖

+
γn+1

1 − αn+1
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 −αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)

+
γn+1

1 − αn+1
|δn+1 − δn|(‖f(xn)‖+ ‖zn‖) +

γn+1

1 −αn+1
(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖)

+
γn+1

1 − αn+1
(1 − δn+1)(1 − λn+1)‖xn+2 − xn+1‖

6
1

1 − αn+1
[βn+1ψ+ γn+1δn+1ψ+ γn+1(1 − δn+1)λn+1] ‖xn+1 − xn‖

+
γn+1

1 − αn+1
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 −αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)

+
γn+1

1 − αn+1
|δn+1 − δn|(‖f(xn)‖+ ‖zn‖) +

γn+1

1 −αn+1
(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖)

+
γn+1

1 − αn+1
(1 − δn+1)(1 − λn+1)

{
[

1 −
(βn+1 + γn+1δn+1)η

1 − γn+1(1 − δn+1)(1 − λn+1)

]

‖xn+1 − xn‖

+
γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖

+

[

|αn+1 −αn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|βn+1 − βn|

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|γn+1 − γn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|δn+1 − δn|γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|λn+1 − λn|γn+1(1 − δn+1)

1 − γn+1(1 − δn+1)(1 − λn+1)

]

M

}

6
1

1 − αn+1
[βn+1ψ+ γn+1δn+1ψ+ γn+1(1 − δn+1)λn+1

+γn+1(1 − δn+1)(1 − λn+1)] ‖xn+1 − xn‖

+
γn+1

1 − αn+1
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 −αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)

+
γn+1

1 − αn+1
|δn+1 − δn|(‖f(xn)‖+ ‖zn‖) +

γn+1

1 −αn+1
(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖)

+
γn+1

1 − αn+1
(1 − δn+1)(1 − λn+1)

{
γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖
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+

[

|αn+1 −αn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|βn+1 − βn|

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|γn+1 − γn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|δn+1 − δn|γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|λn+1 − λn|γn+1(1 − δn+1)

1 − γn+1(1 − δn+1)(1 − λn+1)

]

M

}

=

[

1 −
(βn+1 + γn+1δn+1)η

1 − αn+1

]

‖xn+1 − xn‖

+
γn+1

1 − αn+1
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖+

∣

∣

∣

∣

βn+1

1 −αn+1
−

βn

1 −αn

∣

∣

∣

∣

(‖f(xn)‖+ ‖T(µn)yn‖)

+
γn+1

1 − αn+1
|δn+1 − δn|(‖f(xn)‖+ ‖zn‖) +

γn+1

1 −αn+1
(1 − δn+1)|λn+1 − λn|(‖xn‖+ ‖xn+1‖)

+
γn+1

1 − αn+1
(1 − δn+1)(1 − λn+1)

{
γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)
sup

y∈{yn}

‖T(µn+1)y− T(µn)y‖

+

[

|αn+1 −αn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|βn+1 − βn|

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|γn+1 − γn|

1 − γn+1(1 − δn+1)(1 − λn+1)
+

|δn+1 − δn|γn+1

1 − γn+1(1 − δn+1)(1 − λn+1)

+
|λn+1 − λn|γn+1(1 − δn+1)

1 − γn+1(1 − δn+1)(1 − λn+1)

]

M

}

.

Therefore,
lim sup

n→∞

(‖wn+1 −wn‖− ‖xn+1 − xn‖) 6 0.

Applying Lemma 2.1, we obtain lim
n→∞

‖wn − xn‖ = 0 and by setting {wn}, we also have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)

Next, we will show that limn→∞ ‖xn − T(µn)xn‖ = 0. We observe that

‖zn − xn‖ = (1 − λn)‖xn+1 − xn‖

and

‖yn − zn‖ = δn‖f(x) − zn‖,

which imply that
lim

n→∞
‖zn − xn‖ = 0

and
lim

n→∞
‖yn − zn‖ = 0.

Therefore, we conclude that
lim

n→∞
‖yn − xn‖ = 0. (3.4)

Consider that

‖xn − T(µn)xn‖ 6 ‖xn − xn+1‖+ ‖xn+1 − T(µn)xn‖

= ‖xn − xn+1‖+ ‖αnxn + βnf(xn) + γnT(µn)yn − T(µn)xn‖

6 ‖xn − xn+1‖+αn‖xn − T(µn)xn‖+ βn‖f(xn) − T(µn)xn‖+ γn‖T(µn)yn − T(µn)xn‖

6 ‖xn − xn+1‖+αn‖xn − T(µn)xn‖+ βn‖f(xn) − T(µn)xn‖+ γn‖yn − xn‖,
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which implies that

‖xn − T(µn)xn‖ 6
1

1 −αn

‖xn − xn+1‖+
βn

1 −αn

‖f(xn) − T(µn)xn‖+
γn

1 −αn

‖yn − xn‖.

It follows from the conditions (ii), (iii) and (3.4), we get

lim
n→∞

‖xn − T(µn)xn‖ = 0. (3.5)

Now, we show that z ∈ F(S). We can choose a sequence {xnk
} of {xn} such that {xnk

} is bounded and
there exists a subsequence {xnkj

} of {xnk
} which converges weakly to z. Without loss of generality, we can

assume that xnk
⇀ z. Let µnk

> 0 such that µnk
→ 0 and

‖T(µnk
)xnk

− xnk
‖

µnk

→ 0, k → ∞. Fix t > 0, we

can notice that

‖xnk
− T(t)z‖ 6

[t/µnk
]−1

∑

i=0

∥

∥t
(

(i+ 1)µnk

)

xnk
− T(iµnk

)xnk

∥

∥

+
∥

∥T
(

[t/µnk
]µk

)

xnk
− T

(

[t/µnk
]µnk

)

z
∥

∥

+
∥

∥T
(

[t/µnk
]µnk

)

z− T(t)z
∥

∥

6 [t/µnk
]‖T(µnk

)xnk
− xnk

‖+ ‖xnk
− z‖+

∥

∥T
(

t− [t/µnk
]µnk

)

z− z
∥

∥

6 t
‖T(µnk

)xnk
− xnk

‖

µnk

+ ‖xnk
− z‖+

∥

∥T
(

t− [t/µnk
]µnk

)

z− z
∥

∥

6 t
‖T(µnk

)xnk
− xnk

‖

µnk

+ ‖xnk
− z‖+ max{‖T(µ)z− z‖ : 0 6 µ 6 µnk

}.

For all k ∈ N, we have
lim sup

k→∞

‖xnk
− T(t)z‖ 6 lim sup

k→∞

‖xnk
− z‖.

Since a Banach space E with a weakly sequentially continuous duality mapping satisfies the Opial’s
condition, this implies T(t)z = z. Therefore, z ∈ F(S).

By Lemma 2.2, the sequence {xt} is defined by xt = tf(xt) + (1 − t)Txt such that t ∈ (0, 1) which is
converses strongly to a fixed point x∗ ∈ F(S) and solves the variational inequality:

〈(f− I)x∗, J(z− x∗)〉 6 0, ∀z ∈ F(S).

It follows from Lemma 2.3 and (3.3)−(3.5), we conclude that

lim sup
n→∞

〈(f− I)x∗, J(yn − x∗)〉 6 0 (3.6)

and
lim sup

n→∞

〈(f− I)x∗, J(xn+1 − x∗)〉 6 0. (3.7)

Finally, we show that {xn} converges strongly to x∗ ∈ F(S). Assume that the sequence {xn} does not
converse strongly to x∗, there exists a subsequence {xnk

} of {xn} and ǫ > 0 such that ‖xnk
− x∗‖ > ǫ, ∀k =

1, 2, . . .. For this ǫ there exists r ∈ (0, 1) such that

‖f(xnk
) − f(x∗)‖ 6 r‖xnk

− x∗‖.
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We compute that

‖ynk
− x∗‖2 = 〈ynk

− x∗, J(ynk
− x∗)〉

= 〈δnk
f(xnk

) + (1 − δnk
)znk

− x∗, J(ynk
− x∗)〉

= 〈δnk
(f(xnk

) − x∗) + (1 − δnk
)(znk

− x∗), J(ynk
− x∗)〉

= δnk
〈f(xnk

) − f(x∗), J(ynk
− x∗)〉+ δnk

〈f(x∗) − x∗, J(ynk
− x∗)〉

+(1 − δnk
)〈znk

− x∗, J(ynk
− x∗)〉

= δnk
〈f(xnk

) − f(x∗), J(ynk
− x∗)〉+ δnk

〈f(x∗) − x∗, J(ynk
− x∗)〉

+(1 − δnk
)〈λnk

xnk
+ (1 − λnk

)xnk+1
− x∗, J(ynk

− x∗)〉

= δnk
〈f(xnk

) − f(x∗), J(ynk
− x∗)〉+ δnk

〈f(x∗) − x∗, J(ynk
− x∗)〉

+(1 − δnk
)〈λnk

(xnk
− x∗) + (1 − λnk

)(xnk+1
− x∗), J(ynk

− x∗)〉

= δnk
〈f(xnk

) − f(x∗), J(ynk
− x∗)〉+ δnk

〈f(x∗) − x∗, J(ynk
− x∗)〉

+(1 − δnk
)λnk

〈xnk
− x∗, J(ynk

− x∗)〉+ (1 − δnk
)(1 − λnk

)〈xnk+1
− x∗, J(ynk

− x∗)〉

6 rδnk
‖xnk

− x∗‖‖ynk
− x∗‖+ δnk

〈f(x∗) − x∗, J(ynk
− x∗)〉

+(1 − δnk
)λnk

‖xnk
− x∗‖‖ynk

− x∗‖+ (1 − δnk
)(1 − λnk

)‖ynk
− x∗‖‖xnk+1

− x∗‖

6 [rδnk
+ (1 − δnk

)λnk
]
1

2

(

‖xnk
− x∗‖2 + ‖ynk

− x∗‖2
)

+ δnk
〈f(x∗) − x∗, J(ynk

− x∗)〉

+(1 − δnk
)(1 − λnk

)
1

2

(

‖ynk
− x∗‖2 + ‖xnk+1

− x∗‖2
)

=
rδnk

+ (1 − δnk
)λnk

2
‖xnk

− x∗‖2 +
1 − δnk

(1 − r)

2
‖ynk

− x∗‖2

+δnk
〈f(x∗) − x∗, J(ynk

− x∗)〉+
(1 − δnk

)(1 − λnk
)

2
‖xnk+1

− x∗‖2,

which implies that

‖ynk
− x∗‖2

6
rδnk

+ (1 − δnk
)λnk

1 + δnk
(1 − r)

‖xnk
− x∗‖2 +

2δnk

1 + δnk
(1 − r)

〈f(x∗) − x∗, J(ynk
− x∗)〉

+
(1 − δnk

)(1 − λnk
)

1 + δnk
(1 − r)

‖xnk+1
− x∗‖2.

We observe that

‖xnk+1
− x∗‖2 = 〈xnk+1

− x∗, J(xnk+1
− x∗)〉

= 〈αnk
xnk

+ βnk
f(xnk

) + γnk
T(µnk

)ynk
− x∗, J(xnk+1

− x∗)〉

= 〈αnk
(xnk

− x∗) +βnk
(f(xnk

) − x∗) + γnk
(T(µnk

)ynk
− x∗), J(xnk+1

− x∗)〉

= αnk
〈xnk

− x∗, J(xnk+1
− x∗)〉+ βnk

〈f(xnk
) − f(x∗), J(xnk+1

− x∗)〉

+βnk
〈f(x∗) − x∗, J(xnk+1

− x∗)〉+ γnk
〈T(µnk

)ynk
− x∗, J(xnk+1

− x∗)〉

6 αnk
‖xnk

− x∗‖‖xnk+1
− x∗‖+ rβnk

‖xnk
− x∗‖‖xnk+1

− x∗‖

+βnk
〈f(x∗) − x∗, J(xnk+1

− x∗)〉+ γnk
‖ynk

− x∗‖‖xnk+1
− x∗‖

6 (αnk
+ rβnk

)
1

2

(

‖xnk
− x∗‖2 + ‖xnk+1

− x∗‖2
)

+βnk
〈f(x∗) − x∗, J(xnk+1

− x∗)〉

+γnk

1

2

(

‖ynk
− x∗‖2 + ‖xnk+1

− x∗‖2
)

=
αnk

+ rβnk

2
‖xnk

− x∗‖2 +
αnk

+ rβnk

2
‖xnk+1

− x∗‖2

+βnk
〈f(x∗) − x∗, J(xnk+1

− x∗)〉+
γnk

2
‖ynk

− x∗‖2 +
γnk

2
‖xnk+1

− x∗‖2
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6
αnk

+ rβnk

2
‖xnk

− x∗‖2 +
αnk

+ rβnk

2
‖xnk+1

− x∗‖2 +βnk
〈f(x∗) − x∗, J(xnk+1

− x∗)〉

+
γnk

2
‖xnk+1

− x∗‖2 +
γnk

2

[

rδnk
+ (1 − δnk

)λnk

1 + δnk
(1 − r)

‖xnk
− x∗‖2

+
2δnk

1 + δnk
(1 − r)

〈f(x∗) − x∗, J(ynk
− x∗)〉+

(1 − δnk
)(1 − λnk

)

1 + δnk
(1 − r)

‖xnk+1
− x∗‖2

]

=

[

αnk
+ rβnk

2
+
γnk

2

(

rδnk
+ (1 − δnk

)λnk

1 + δnk
(1 − r)

)]

‖xnk
− x∗‖2

+

[

αnk
+ rβnk

2
+
γnk

2
+
γnk

2

(

(1 − δnk
)(1 − λnk

)

1 + δnk
(1 − r)

)]

‖xnk+1
− x∗‖2

+βnk
〈f(x∗) − x∗, J(xnk+1

− x∗)〉+
γnk

δnk

1 + δnk
(1 − r)

〈f(x∗) − x∗, J(ynk
− x∗)〉

=
(1 − γnk

−βnk
(1 − r)) (1 + δnk

(1 − r)) + γnk
(rδnk

+ (1 − δnk
)λnk

)

2 (1 + δnk
(1 − r))

‖xnk
− x∗‖2

+
(1 − βnk

(1 − r)) (1 + δnk
(1 − r)) + γnk

(1 − δnk
)(1 − λnk

)

2 (1 + δnk
(1 − r))

‖xnk+1
− x∗‖2

+βnk
〈f(x∗) − x∗, J(xnk+1

− x∗)〉+
γnk

δnk

1 + δnk
(1 − r)

〈f(x∗) − x∗, J(ynk
− x∗)〉.

It follows that

‖xnk+1
− x∗‖2

6
(1 − γnk

−βnk
(1 − r)) (1 + δnk

(1 − r)) + γnk
(rδnk

+ (1 − δnk
)λnk

)

(1 + βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(1 − δnk

)(1 − λnk
)

‖xnk
− x∗‖2

+
2βnk

(1 + δnk
(1 − r))

(1 +βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(1 − δnk

)(1 − λnk
)
〈f(x∗) − x∗, J(xnk+1

− x∗)〉

+
2γnk

δnk

(1 +βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(1 − δnk

)(1 − λnk
)
〈f(x∗) − x∗, J(ynk

− x∗)〉

=

[

1 −
(1 + βnk

(1 − r)) (1 + δnk
(1 − r)) − γnk

(1 − δnk
)(1 − λnk

)

(1 + βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(1 − δnk

)(1 − λnk
)

−
− (1 − γnk

− βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(rδnk

+ (1 − δnk
)λnk

)

(1 +βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(1 − δnk

)(1 − λnk
)

]

‖xnk
− x∗‖2

+
2βnk

(1 + δnk
(1 − r))

(1 +βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(1 − δnk

)(1 − λnk
)
〈f(x∗) − x∗, J(xnk+1

− x∗)〉

+
2γnk

δnk

(1 +βnk
(1 − r)) (1 + δnk

(1 − r)) − γnk
(1 − δnk

)(1 − λnk
)
〈f(x∗) − x∗, J(ynk

− x∗)〉,

where

α ′
nk

=
(1+βnk

(1−r))(1+δnk
(1−r))−γnk

(1−δnk
)(1−λnk

)−(1−γnk
−βnk

(1−r))(1+δnk
(1−r))−γnk(rδnk

+(1−δnk
)λnk)

(1+βnk
(1−r))(1+δnk

(1−r))−γnk
(1−δnk

)(1−λnk
)

=
2βnk

(1−r)(1+δnk
(1−r))+2γnk

δnk
(1−r)

(1+βnk
(1−r))(1+δnk

(1−r))−γnk
(1−δnk

)(1−λnk
)

=
2(1−αnk

−γnk
)(1−r)(1+δnk

(1−r))+2γnk
δnk

(1−r)

(1+βnk
(1−r))(1+δnk

(1−r))−γnk
(1−δnk

)(1−λnk
)
∈ (0, 1)

and

δ ′nk
=

2βnk(1+δnk
(1−r))

(1+βnk
(1−r))(1+δnk

(1−r))−γnk
(1−δnk

)(1−λnk
)
〈f(x∗) − x∗, J(xnk+1

− x∗)〉

+
2γnk

δnk

(1+βnk
(1−r))(1+δnk

(1−r))−γnk
(1−δnk

)(1−λnk
)
〈f(x∗) − x∗, J(ynk

− x∗)〉.
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Now, from the condition (iv), (3.7), (3.6) and Lemma 2.4, we have
∞∑

k=0

α ′
nk

= ∞ and lim sup
k→∞

δ ′nk

α ′
nk

6 0. Then

we get ‖xnk
− x∗‖ → 0 as k → ∞. This is a contradiction, hence the sequence {xn} converges strongly to

x∗ ∈ F(S). The proof is complete.

Corollary 3.2. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and S = {T(t) : t > 0} be a nonexpansive semigroup
from C into itself such that F(S) 6= 0. Let {xn} be the sequences defined by x1 ∈ C and






zn =
xn + xn+1

2
,

yn = δnf(xn) + (1 − δn)zn,
xn+1 = αnxn + βnf(xn) + γnT(µn)yn,

(3.8)

where {αn}, {βn}, {γn} and {δn} are the sequences in (0, 1). The following conditions are satisfied:

(i) αn + βn + γn = 1;

(ii) lim
n→∞

βn = lim
n→∞

δn = lim
n→∞

µn = lim
n→∞

|αn+1 − αn| = 0 and

lim
n→∞

sup
x∈C̃

‖T(µn+1)x− T(µn)x‖ = 0, C̃ bounded subset of C;

(iii) 0 < lim inf
n→∞

αn 6 lim sup
n→∞

αn < 1;

(iv)

∞∑

n=0

βn = ∞ for all n > 1.

Then {xn} converges strongly to x∗ ∈ F(S) which also solves the following variational inequality:

〈(I− f)x∗, J(z− x∗)〉 6 0, ∀z ∈ F(S). (3.9)

Proof. Putting λn =
1

2
in Theorem 3.1, we can conclude the desired conclusion easily. This completes the

proof.

4. Applications

(I) Application to the other forms of semigroups.

Theorem 4.1. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and S = {T(t) : t > 0} be a nonexpansive semigroup
from C into itself such that F(S) 6= 0. Let {xn} be the sequences defined by x1 ∈ C and






zn = λnxn + (1 − λn)xn+1,
yn = δnf(xn) + (1 − δn)zn,

xn+1 = αnxn +βnf(xn) + γn
1

tn

∫tn

0
T(t)yndt,

(4.1)

where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in (0, 1), {tn} is an increasing sequence in (0, ∞) such that

lim
n→∞

tn = ∞ and lim
n→∞

tn

tn+1
= 1. The following conditions are satisfied:

(i) αn + βn + γn = 1;

(ii) lim
n→∞

βn = lim
n→∞

δn = lim
n→∞

µn = lim
n→∞

|αn+1 − αn| = lim
n→∞

|λn+1 − λn| = 0 and

lim
n→∞

sup
x∈C̃

∥

∥

∥

∥

1

tn+1

∫ tn+1

0
T(t)xds−

1

tn

∫ tn

0
T(t)xds

∥

∥

∥

∥

= 0, C̃ bounded subset of C;
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(iii) 0 < lim inf
n→∞

αn 6 lim sup
n→∞

αn < 1;

(iv)

∞∑

n=0

βn = ∞ for all n > 1.

Then {xn} converges strongly to x∗ ∈ F(S) which also solves the following variational inequality:

〈(I− f)x∗, J(z− x∗)〉 6 0, ∀z ∈ F(S). (4.2)

Proof. Define µn(f) =
1

tn

∫tn

0
f(t)dt, ∀n = 0, 1, 2, . . . where f belong to the space of all real valued bounded

continuous functions on positive real number with supremum norm. Then, {µn} is a regular sequence

of means [18]. Further, we have T(µn)x =
1

tn

∫tn

0
T(t)xdt, ∀x ∈ C and apply theorem 3.1 to conclude the

result.

Corollary 4.2. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and S = {T(t) : t > 0} be a nonexpansive semigroup
from C into itself such that F(S) 6= 0. Let {xn} be the sequences defined by x1 ∈ C and






zn =
xn + xn+1

2
,

yn = δnf(xn) + (1 − δn)zn,

xn+1 = αnxn +βnf(xn) + γn
1

tn

∫tn

0
T(t)yndt,

(4.3)

where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in (0, 1), {tn} is an increasing sequence in (0, ∞) such that

lim
n→∞

tn = ∞ and lim
n→∞

tn

tn+1
= 1. The following conditions are satisfied:

(i) αn + βn + γn = 1;

(ii) lim
n→∞

βn = lim
n→∞

δn = lim
n→∞

µn = lim
n→∞

|αn+1 − αn| = lim
n→∞

|λn+1 − λn| = 0 and

lim
n→∞

sup
x∈C̃

∥

∥

∥

∥

1

tn+1

∫ tn+1

0
T(t)xds−

1

tn

∫ tn

0
T(t)xds

∥

∥

∥

∥

= 0, C̃ bounded subset of C;

(iii) 0 < lim inf
n→∞

αn 6 lim sup
n→∞

αn < 1;

(iv)
∞∑

n=0

βn = ∞ for all n > 1.

Then {xn} converges strongly to x∗ ∈ F(S) which also solves the following variational inequality:

〈(I− f)x∗, J(z− x∗)〉 6 0, ∀z ∈ F(S). (4.4)

(II) Application to Hilbert spaces.
From the duality mapping J : E→ 2E∗

, if E = H is a real Hilbert space then J = I is the identity mapping.
A

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let f be a generalized contraction
mapping from C into itself and S = {T(t) : t > 0} be a nonexpansive semigroup from C into itself such that
F(S) 6= 0. Let {xn} be the sequences defined by x1 ∈ C and






zn = λnxn + (1 − λn)xn+1,
yn = δnf(xn) + (1 − δn)zn,
xn+1 = αnxn + βnf(xn) + γnT(µn)yn,

(4.5)

where {αn}, {βn}, {γn}, {δn} and {λn} are the sequences in (0, 1). The following conditions are satisfied:
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(i) αn + βn + γn = 1;

(ii) lim
n→∞

βn = lim
n→∞

δn = lim
n→∞

µn = lim
n→∞

|αn+1 − αn| = lim
n→∞

|λn+1 − λn| = 0 and

lim
n→∞

sup
x∈C̃

‖T(µn+1)x− T(µn)x‖ = 0, C̃ bounded subset of C;

(iii) 0 < lim inf
n→∞

αn 6 lim sup
n→∞

αn < 1;

(iv)
∞∑

n=0

βn = ∞ for all n > 1.

Then {xn} converges strongly to x∗ ∈ F(S) which also solves the following variational inequality:

〈(I− f)x∗, z− x∗〉 6 0, ∀z ∈ F(S). (4.6)

Corollary 4.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let f be a generalized contraction
mapping from C into itself and S = {T(t) : t > 0} be a nonexpansive semigroup from C into itself such that
F(S) 6= 0. Let {xn} be the sequences defined by x1 ∈ C and






zn =
xn + xn+1

2
,

yn = δnf(xn) + (1 − δn)zn,
xn+1 = αnxn + βnf(xn) + γnT(µn)yn,

(4.7)

where {αn}, {βn}, {γn} and {δn} are the sequences in (0, 1). The following conditions are satisfied:

(i) αn + βn + γn = 1;

(ii) lim
n→∞

βn = lim
n→∞

δn = lim
n→∞

µn = lim
n→∞

|αn+1 − αn| = 0 and

lim
n→∞

sup
x∈C̃

‖T(µn+1)x− T(µn)x‖ = 0, C̃ bounded subset of C;

(iii) 0 < lim inf
n→∞

αn 6 lim sup
n→∞

αn < 1;

(iv)

∞∑

n=0

βn = ∞ for all n > 1.

Then {xn} converges strongly to x∗ ∈ F(S) which also solves the following variational inequality:

〈(I− f)x∗, z− x∗〉 6 0, ∀z ∈ F(S). (4.8)

5. Numerical Example

Example 5.1. Let E = R
3 and an inner product 〈·, ·〉 : R

3 × R
3 → R be defined by

〈x, y〉 = x · y = x1 · y1 + x2 · y2 + x3 · y3, ∀x = (x1, x2, x3), y = (y1,y2,y3)

and the usual norm ‖ · ‖ : R
3 → R be defined by

‖x‖ =

√

(x1)2 + (x2)2 + (x3)2.

Let C =
{

x ∈ R
3
∣

∣‖x‖ 6 1
}

, αn = λn =
n+ 1

3n
, βn =

1

3n
, δn = µn =

1

n
, γn =

2n− 2

3n
and x1 = (1, 2, 3)

for all n = 1, 2, . . . which satisfy the conditions (I) − (IV) in Theorem 3.1. We define the mappings

T(t), f : R
3 → R

3 as follows: (T(t))(x) = xe−t and f(x) =
x

10
for all x ∈ R

3. Then the sequence

xn+1 =
30n3 + 33n2 + (20n3 − 14n2 − 26n+ 20)e−1/n

90n3 − (40n3 − 100n2 + 80n− 20)e−1/n
xn

converges strongly to 0 = (0, 0, 0) shown in Figure 1 and Table 1.
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Figure 1: The iteration process.

Table 1: The value of sequence {xn}

n x1
n x2

n x3
n n x1

n x2
n x3

n

1 1 2 3 10 0.042547 0.085093 0.127640
2 0.7 1.4 2.1 50 0.000722 0.001445 0.002167
3 0.425637 0.851275 1.276912 100 0.000109 0.000218 0.000327
4 0.270485 0.540970 0.811455 400 0.0000023 0.0000046 0.0000069
5 0.181409 0.362819 0.544228 797 0.0000003 0.0000006 0.00000099
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