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Abstract

Project Code : TRG5880203

Project Title : The iterations for nonexpansive semigroup mapping in Banach

spaces

Investigator : Phayap Katchang

Rajamangala University of Technology Lanna Tak

E-mail Address : p.katchang@hotmail.com

Project Period : Two years

Abstract : The purpose of this project is to introduce new iterative algorithms for
approximating a fixed point of nonexpansive semigroup mapping in Banach spaces
which is proved the strong convergence theorems under some suitable conditions.
All in all, we plan to construct the algorithms to approximate the set of solutions of
the system of generalized mixed equilibrium problems or the set of solutions of the
system of variational inequality problems. Furthermore, we also plan to study the
relationships between the above problem and an interesting topic, as fixed point

theory.
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Paper 1

In this research, we focus on two main problems, the first one is a fixed point
problem of a nonexpansive semigroup and the other is a variational inequality
problem for an inverse strongly accretive mapping. Passing through the modified
Mann iterative method, we propose the new iterative scheme to find the common
elements solving our mentioned problems. Furthermore, we aim to obtain some
strong convergence theorems under certain appropriate conditions in the g-
uniformly smooth Banach spaces. Our results improve and extend resulting

outcomes in the literature.

Paper 2

In this research, we focus on a common fixed point problem of a nonexpansive
semigroup with the generalized viscosity methods for implicit iterative algorithms.
Our main objective is to construct the new strong convergence theorems under
certain appropriate conditions in uniformly convex and uniformly smooth Banach
spaces. Specifically, the main results make a contribution to the implicit midpoint
theorems. The findings for theorems in Hilbert spaces and the other forms of a
nonexpansive semigroup can be used in several practical purposes. Finally, a

numerical example in 3 dimensions is provided to support our main results.
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Paper 1

Theorem 1. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a
q-uniformly smooth and uniformly convex Banach space E which admits a weakly sequentially
continuous generalized duality mapping J, : E — E*. Let Q¢ be a sunny nonexpansive retraction
from E onto C, A : C — E be an p-inverse-strongly accretive operator, S = {S(s) : s > 0}
be a nonexpansive semigroup from C' into itself, L, : C — E be a L-Lipschitzian mapping with
constant L > 0and L, : C — E be a k-Lipschitzian and n-strongly accretive operator with constant
k,m > 0. Assume {an}, {Bn}, {1}, { \} C (0,1), {un} C (0,00) such that {\,} C [a,b] C (0,1),
O<pu< (C;%)ﬁ where c, is a positive real number, 0 < a < A\, <b < (%)4%1, 0 <~L < 7 where
T=pu(n— W) and F := F(S)NVI(C, A) # 0. Let {z,} be the sequences defined by z, € C
and

zn = Qo(xy, — MAxy,)

yn = Qc [an’Ylen + nn + (L —yn)I — anMLQ)S(Mn)Zn]a (1)

Tnt1 = BnTn + (1 — Bn)S(kn)Yn,

which satisfy the following conditions:

(C1) limp o0 ap =0, D07 o oty = 00; @NA limy, 00 |41 — 0| = 0;

(C2) limy o0 | Ant+1 — An| = 0,liminf,, o0 Ay, > 0;

(C3) 0 <liminf, o By <limsup,,_,. On < 1;

(C4) lim,, o0 i, = 0;

(C5) limy, 00 sup i 1S (1nr1)2 — S(pn)z|| =0, C bounded subset of C;

(C6) limy, o0 [Ynt+1 — n| = 0,0 < liminf, o0 v, < limsup,,_,oo 1 < L.

Then {x,} converges strongly to x* € F which also solves the following variational inequality:
(yLhz® — pLox™, Jy(z — x¥)) < 0,Vz € F. (2)

Paper 2

Theorem 2. Let C be a nonempty closed convex subset of uniformly convex and uniformly
smooth Banach space E. Let f be a generalized contraction mapping from C into itself and
S ={T(t) : t > 0} be a nonexpansive semigroup from C into itself such that F'(S) # 0. Let {z,}
be the sequences defined by x, € C and

2p = AnTp + (1 - )\n)xn-i-h
Yn = 6nf($n) + (1 - 5n)zn7 (3)
T+l = QpTn + ﬁnf(xn) + 'YnT(,Un)yna
where {an}, {6n}, {1}, {0n} and {\,} are the sequences in (0,1). The following conditions are
satisfied:

(D an + B+ =1,
) Jiz3, B = g, 00 = Jig in = T8 lomin = anl = 100, [Anta = 2] = 0 and

lim sup |7 (pns1)a — T(pn)l| = 0, C bounded subset of C;
e el



(iii) 0 <liminf o, <limsupa, < 1;
n—oo

n—oo
(iv) > B, = oo foralln > 1.
n=0

Then {z,,} converges strongly to =* € F(S) which also solves the following variational inequality:

(I —flz*,J(z—2x")) <0,Vz € F(S). (4)
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ABSTRACT. In this research, we focus on two main problems, the first one is a fixed point problem
of a nonexpansive semigroup and the other is a variational inequality problem for an inverse strongly
accretive mapping. Passing through the modified Mann iterative method, we propose the new iterative
scheme to find the common elements solving our mentioned problems. Furthermore, we aim to obtain
some strong convergence theorems under certain appropriate conditions in the g-uniformly smooth
Banach spaces. Our results improve and extend resulting outcomes in the literature.
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1. INTRODUCTION

According to our framework throughout this research, we first preview some definitions involving a
Banach space F as follows. Let U = {z € E : ||z|| = 1}.

e F is said to be uniformly convex if, for any € € (0, 2], there exists 6 > 0 such that, for any
z,y €U, ||z —y|| > € implies ||| <1-4.
It is known that a uniformly convex Banach space is reflexive and strictly convex.

e F is said to be smooth if lim;_.q llzttyll=lizll oyists for all r,yeU.
It is also said to be uniformly smooth if the limit is attained uniformly for all z,y € U. The
modulus of smoothness of E is defined by

1
p(r) = sup { S(llz +yll + o —yl) = 1: 2,y € B, ol = 1yl =7},

where p : [0,00) — [0, 00) is a function.
It is known that E is uniformly smooth if and only if lim,_, @ =0.
e F is said to be g-uniformly smooth if there exists a constant ¢ > 0 such that p(7) < ¢7? for
all 7 > 0 where ¢ is a fixed real number with 1 < ¢ < 2.
Let E be a real Banach space and E* be the dual space of E with norm || || and (-, -) pairing between

E and E*. For ¢ > 1, the generalized duality mapping J, : B — 2F" is defined by

Jo() ={f € E*: (z, f) = 2| % I fIl = =] 7~}
for all x € E. In particular, if ¢ = 2, the mapping Js is called the normalized duality mapping and
written by J; = J as usual. Further, we have the following properties of the generalized duality
mapping Jg:

*Corresponding author.
§ Email address: u.witthayarat@hotmail.com (U. Witthayarat), chaichana.jai@rmutr.ac.th (C. Jaiboon),
somyotp@nu.ac.th (S. Plubtieng) and p.katchang@rmutl.ac.th (P. Katchang).
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(i) Jy(z) = ||z]|972J2(z) for all z € E with z # 0;
(ii) Jy(tx) = t97 1 J,(x) for all x € E and t € [0, o0);
(ili) Jy(—z) = —Jy(z) for all x € E.
Certainly, if F is smooth, then J, is single-valued and can be written by j, (see also [1, 2]).
Let C' be a nonempty closed convex subset of a real Banach space E. Recall that a mapping
A:C — (C is said to be
(i) Lipschitzian with Lipschitz constant L > 0 if ||Az — Ay|| < Lljz — y||, Vz,y € C;
(ii) nonexpansive if ||[Az — Ay|| < ||z —y||, Vz,y € C.
An operator A : C' — F is said to be
(i) accretive if there exists j,(z — y) € J,(z — y) such that

(Az — Ay, jq(z —y)) 20, Vz,y € C;
(ii) B-strongly accretive if for any 8 > 0 there exists j,(x —y) € Jy(z — y) such that
(Az — Ay, jo(z —y)) = Bllz —y||?, Va,y € C;
(ili) B-inverse strongly accretive if, for any § > 0 there exists j,(x — y) € Jy(x — y),
(Az — Ay, jo(z —y)) = Bl Az — Ay||?, Va,y € C.

Let D be a subset of C' and Q : C — D. Then @ is said to be sunny if Q(Qz + t(z — Qx)) = Qu,
whenever Qz+t(x —Qx) € C for x € C'and ¢t > 0. A subset D of C' is said to be a sunny nonexpansive
retract of C' if there exists a sunny nonexpansive retraction @ of C onto D (see [3, 4, 5]). A mapping
Q : C — C is called a retraction if Q? = Q. If a mapping Q : C' — C' is a retraction, then Qz = z for
all z are in the range of Q.

A family S = {S(s) : 0 < s < oo} of mappings of C' into itself is called a nonexpansive semigroup
on C' if it satisfies the following conditions:

(i) S(0)z =z for all x € C;
(ii) S(s+1t) = S5(s)S(t) for all s,t > 0;
(iii) |S(s)z — S(s)y|| < ||l —y|| for all z,y € C and s > 0;
(iv) for each z € C, the mapping S(-)z from [0, c0) into C' is continuous.
Let F(S) stands for the common fixed point set of the semigroup S, i.e., F(S) = {z € C : S(s)x =
x,Vs > 0}. It is easy to see that F'(S) is closed and convex (see also [6, 7, 8, 9]).

In 1969, Takahashi [10] proved the first fixed point theorem for a noncommutative semigroup of
nonexpansive mappings which generalizes De Marr’s [11] fixed point theorem. For works related to
semigroups of nonexpansive, asymptotically nonexpansive, and asymptotically nonexpansive type re-
lated to reversibility of a semigroup, we refer the reader to [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].
In 2007, Lau et al. [18] introduced the following Mann’s explicit iteration process;

Tl = @ + (1 — )T (n)Tpn, Yn>1,

for a semigroup & = {T'(s) : s € S} of nonexpansive mappings on a compact convex subset C' of a
smooth and strictly convex Banach space. In 2012, Wangkeeree and Preechasilp [24] introduced the

iterative scheme:
x1 € C,

Yn = QnZpn + (1 — )T (tn) 20,
Tn+1 = 6nf(xn) + (1 - ﬁn)yna n > 0.
They proved the strong convergence theorems by using a nonexpansive semigroup in Banach spaces.
In 2006, Aoyama et al. [25] proved a weak convergence theorem in Banach spaces by using the
iterative algorithm as the following
{ r1 =z € C,
T+l = Qndp + (1 - an)QC(In - /\nAIn)a
for all n > 1. They solved the generalized variational inequality problem for finding a point x € C' such
that
(Az, J(y—2)) >0 (1.1)
for all y € C. The solution set of (1.1) is denoted by VI(C, A). Variational inequality has become a
rich of inspiration in pure and applied mathematics. Recently, classical variational inequality problems
have been extended and generalized to study a large variety of problems arising in structural analysis,
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economics, optimization, operations research and engineering sciences and have witnessed an explosive
growth in theoretical advances, algorithmic development, etc; see e.g. [26, 27, 28].

In 2013, Song and Ceng [29] proved a strong convergence theorem in a g-uniformly smooth Banach
space as the following:

xr1 € O,
zn = Qc(xy, — 0 Bxy,),
kn = Qc(zn — ANzp), (1.2)

Yn = ﬁnkn + (1 - an)xnu
Tn+1 = QC[an'fon + Yo + (L =)l — O‘nNV)Tnyn]v n > 0.

They introduced a general iterative algorithm for finding a common element of the set of common fixed
points of an infinite family of nonexpansive mappings and the solution set of systems of variational
inequalities.

Motivated and inspired by Wangkeeree and Preechasilp [24] and Song and Ceng [29]. In this paper,
we introduce a new iterative scheme for finding common solutions of a variational inequality for an
inverse-strongly accretive mapping and the solutions of a fixed point problem for a nonexpansive
semigroup by using the modified Mann iterative method. We shall prove the strong convergence
theorem in a g-uniformly smooth Banach spaces under some parameters controlling conditions. Our
results extend and improve the recent results of Aoyama et al. [25], Wangkeeree and Preechasilp [24],
Song and Ceng [29] and other authors.

2. PRELIMINARIES

A Banach space E is said to satisfy Opial’s condition if for any sequence {x,} in F, 2,, = x(n — 00)
implies
limsup ||z, — z|| < limsup ||z, —y||,Yy € E with z # y.
n—oo n—oo
By [30, Theorem 1], it is well known that if E' admits a weakly sequentially continuous duality mapping,
then E satisfies Opial’s condition, and E is smooth.
We need the following lemmas for proving our main results.

Proposition 2.1. ([3]) Let E be a smooth banach space and let C be a nonempty subset of E. Let Q
: E — C be a retraction and let J be the normalized duality mapping on E. Then the following are
equivalent:

(i) Q is sunny and nonexpansive;

(ii) |Qz — Qyl* < (z —y, J(Qz — Qy)),Vz,y € E;

(i) (x — Qx,J(y — Qx)) <0,Vx € E,y € C.

If J, is the generalized duality mapping on E then (x—Quz, J,(y—Qz)) < 0,Vx € E,y € C is equivalent
to this Proposition (see [29]).

Proposition 2.2. ([4, 5, 31]) Let C be a nonempty closed convexr subset of a uniformly convex and
uniformly smooth Banach space E and let T be a nonexpansive mapping of C into itself with F(T) # (.
Then the set F(T) is a sunny nonexpansive retract of C.

Lemma 2.3. ([25]) Let C be a nonempty closed convex subset of a smooth Banach space E. Let Q¢
be a sunny nonexpansive retraction from E onto C' and let A be an accretive operator of C' into E.
Then, for all A > 0,

VI(C, 4) = F(QU — AA)),
where VI(C,A) = {z* € C: (Az*, J(x — 2*)) > 0,Vz € C}.
Lemma 2.4. ([32])Let C be a nonempty bounded closed convexr subset of a uniformly convexr Banach

space E and T : C — C' be a nonexpansive mapping. If {x,} is a sequence of C' such that x, — x and
Ty — Ty — 0 then x is a fixed point of T.

Lemma 2.5. ([33]) Let v > 0 and let E be a uniformly convexr Banach space. Then, there ezists a
continuous, strictly increasing and convex function g : [0,00) — [0,00) with g(0) =0 such that

Az + (1= Nyl < Mz]* + (1 = Vyl* = A1 = Ng(llz — yl)
forallz,ye B, :={z€ E:|z]|<r}and 0 <A< 1.
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Lemma 2.6. ([34]) Let E be a real smooth and uniformly convex Banach space and let v > 0. Then
there exists a strictly increasing, continuous and convex function g : [0,2r] — R such that g(0) = 0 and
g(llz = yl) < ll2l® = 2{e, Jy) + llyl|*, Va,y € By,

where B, ={z € E : ||| <r}.
Lemma 2.7. ([33]) Let E be a real g-uniformly smooth Banach space, then there exists a constant
cqg > 0 such that
2 +yll* < [zl + qly, Jg()) + cqllyll?, Yo,y € E.
In particular, if E is real 2-uniformly smooth Banach space, then there exists a best smooth constant

K > 0 such that
o+ ylI* <llzl” + 2(y, J(z)) + 2K ||y||*,Vz,y € E.

Lemma 2.8. ([35]) Let E be a real Banach space and J : E — 25 be the normalized duality mapping.
Then, for any x,y € E, we have
lz+ 3l < [l + 20y, j (2 + )
for all j(x +y) € J(x+y) with x # y.
Lemma 2.9. ([36]) Let {x,} and {y,} be bounded sequences in a Banach space X and let {5,} be a

sequence in [0,1] with 0 < liminf, o By, < limsup,, . Bn < 1. Suppose xn11 = (1 — Bn)yn + Bnn
for all integers n > 0 and limsup,, o (||Yn+1 — Yn| = |Znt1 — zn|) < 0. Then, lim,, . ||yn — x| = 0.

Lemma 2.10. ([37]) Assume {a,} is a sequence of nonnegative real numbers such that
ant1 < (1 —an)an +6p, n>0

where {an} is a sequence in (0,1) and {6,} is a sequence in R such that

(1) o= an =00

(2) limsup,,_ i—’; <0 or Y2 0] < oo
Then lim,,—.o a, = 0.
Lemma 2.11. ([38, 39]) Let C' be a nonempty, closed and convex subset of a real q-uniformly smooth
Banach space E, Ly : C — E be a k-Lipschitzian and n-strongly accretive operator with constants
ko > 0 and let 0 < p < (SL)7 1, 7 = p(n — L) then for t € (0,min{1,1}), the mapping

cqrd q

S:C — E defined by S := (I —tuLs) is a contraction with a constant 1 — tr.

l’iq

Lemma 2.12. ([29]) Let C be a nonempty, closed and convex subset of a real reflexive and g-uniformly
smooth Banach space E which admits a weakly sequentially continuous generalized duality mapping
Jy from E into E*. Let Qc be a sunny nonexpansive retraction from E onto C, V : C — E a k-
Lipschitzian and n-strongly accretive operator with constants k, n > 0. Suppose f : C — FE is a
L-Lipschitzian mapping with constant L > 0 and T : C — C a nonexpansive mapping such that

F(T)#0. Let 0 < p < (CZZQ)FII and 0 < ~vL < 7 where 7 = p(n — c"“q;”q). Then {z;} defined by
x = Qoltyfar + (I — tuV)Tat] converges strongly to some point x* € F(T) as t — 0, which is the
unique solution of the variational inequality:

(yfx* —pVa*, Jy(p— ")) <0,¥p € F(T).

Lemma 2.13. ([29]) Let C be a closed convex subset of a smooth Banach space E. Let C be a
nonempty subset of C'. Let Q : C — C be a retraction and let J, Jq be the normalized duality mapping
and generalized duality mapping on E, respectively. Then the following are equivalent:

(i) Q is sunny and nonexpansive;

(ii) |Qz — QylI* < (z —y, J(Qz — Qy)), Y,y € E;

(1ii) (x — Qz,J(y — Qx)) < 0,Vx € C,y € C;

(iv) (x — Qz, Jy(y — Qz)) <0,V € C,y € C.

Lemma 2.14. ([41]) Let ¢ > 1. Then the following inequality holds:

q_lb#

1
ab < —a? +
q

for arbitrary positive real numbers a,b.
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3. MAIN RESULTS

Theorem 3.1. Let C be a sunny nonexpansive retract and nonempty closed convexr subset of a q-
uniformly smooth and uniformly convex Banach space E which admits a weakly sequentially continuous
generalized duality mapping J, : E — E*. Let Q¢ be a sunny nonexpansive retraction from E onto
C, A:C — FE be an [-inverse-strongly accretive operator, S = {S(s) : s > 0} be a nonexpansive
semigroup from C' into itself, Ly : C — E be a L-Lipschitzian mapping with constant L > 0 and
Lo : C — FE be a k-Lipschitzian and n-strongly accretive operator with constant k,n > 0. Assume
{om}, {Bu}, {3}, {An} € (0,1), {in} C (0,00) such that {An} C [a,b] C (0,1), 0 < p < (2)a

cqp? Tk
q - )

where cq is a positive real number, 0 < a <\, <b < ('i—ﬁ)q%l, 0 <~L < 7 where 7 = pu(n —
and F:= F(S)NVI(C,A) £ 0. Let {x,} be the sequenées defined by x; € C' and
zn = Qo(zy, — A\ Axy,)
Yn = Qc [an”YLlen + o + (1 —yn)! — anNLZ)S(/Ln)ZnL (3.1)
Tnt1 = Bnn + (1 - ﬁn)s(ﬂn)yna
which satisfy the following conditions:
(C1) limy oo 0y =0, Y07 atn = 00; and limy, oo |1 — @] = 0;
(C2) limp o0 [Ang1 — An| = 0, liminf,, o Ay > 0;
(C3) 0 < liminf, o By < limsup,, . Bn < 1;
(C4) limy,— 00 fin, = 0;
(C5) limy oo sUp, i [S(pnr1)r — S(pn)z| =0, C bounded subset of C;
(C6) limy,— o0 [Ynt1 — Yn| = 0,0 < liminf,, o v < limsup,,_, . ¥ < 1.
Then {xy} converges strongly to x* € F which also solves the following variational inequality:

(vLix™ — pLox™, Jy(z — z*)) < 0,Vz € F. (3.2)
Proof. First of all, we prove that {z,} is bounded. Let p € Fand 0 < a <\, <b < (g)qfll, we
have
lzn =2l = [Qc(xn — AnAxy) — Qc(p — AnAp)||*
11 = AnA)zn — (I = AnA)p|®
[(zn = p) = An(Azn — Ap)||?

IN

< an = pll? = A {Azn — Ap, jg(xn — p)) + cg ALl Azn — Ap||?

< lwn = pll? = aBAn [ Azn — Apl|* + AL || Az, — Apl|

= len =l = Ma(aB — e[| Azy, — Ap||?

< o —pll” (33)

Therefore ||z, — p|| < ||z — p|| and I — A\, A is a nonexpansive where I is an identity mapping. By
condition (C1), we may assume, without loss of generality, that a,, < min{a, 2} where 0 < a <
liminf, o (1 —";,). From Lemma 2.11, we conclude that ||(1 —~,)] —anpLa|| < (1 —7,) — a,7. Since
0 <~L < 7, we have

[#nt1 =pl = [1Bn(@n —p) + (1= Ba)(S(kn)yn — p)

< Ballzn —pll + (1 = Bn)llyn — pll

= Ballzn —pll+ (1 - ﬁn)HQC [avﬁlen T Ynln
+((1 =)l = an,UL2)S(.Un)Zn] - pH

< Ballzn —pll + (L= Bu)I[(X = )T = cnpLo][S(pin ) 2 — p]
+an(vLixn — pLop) + Y (zn — p)||

< Bulln —pll + (1 = Bn)(1 =0 — anT) IS (pn)zn — pll
+(1 = Bn)an||vLrzn, — pLopll + (1 = Bp)¥nllzn — pll

< Bullzn —pll + (1 = Bo)(1 — 0 — anT)|lzn — pll
+(1 = Br)anyl|Lizn — Lapll + (1 = Bn)am ||y Lip — pLep||
+(1 = Bu)mllzn —p

< Ballzn —pll + (1= Bo)llzn —pll = (1 = Bu)mllzn — pl
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—(1 = Bn)anT||zn — pll + (1 = Bn)onyLl|lzn — p

+(1 = Bn)an||vLip — pLap|| + (1 = Bn)ynllzn — Pl
[#n = pll = (1 = Bp)anT|zn — p

+(1 = Bn)anyLl|lzn = pll + (1 = Bn)omllvLip — pLopl
[#n = pll = (1 = Bp)an (T — vL)||lzn — p|

Lip— L
T—~L

By induction, we conclude that

[

—pll < max {||z, —p|

Lip — uL
|7||7 W — 2p||},vn21'
T—~L

This implies that {x,} is bounded, so are {Az,}, {yn}, {S(tn)yn}, {zn} and {S(un)zn}-
Next, we will show that lim, . ||Zn+1 — || = 0 and we observe that

and

lzn+1 — znl

15 (kn+1)2n41 = S(pn) 2n|

||yn+1 - yn”

IN

IN A

IN

IN

IN

||Q0(xn+1 - )‘n-i-len-i-l) —Qc(xn — )‘nAxn)”
[(Tnt1 — Ant1ATny1) — (T — AnAzy) ||

[(Tnt1 = Ant1ATny1) = (Tn — A1 Azn) + (An — Ag1) Az ||

[(I = A1 A)Zns1 — (I = A1 A)Tn || + [Ans1 — Anl| Az ||
”iEnJrl - zn” + |/\n+1 - >‘n|||A$n||a

< IS(knt1)zns1 — S(nt1)znl|

1S (pn+1)2n — S(pn) 2nll
< lzngr = zall + 1S (n+1) 20 — S(pn) 20|
< @ns1 — zall + [Antr = An|l| Az |

+ sup [[S(pnt1)z — ()2l
z€{zn}

|Qc[ant1vLinia + Ynt1Tns1

(1 = Y1) = ang1pLo)S(fn1)2n11)

—Qc YL@ + Ynan + (1 = vn)I — an L) S (pin) 20 ||
| [oms17L1%nt1 + Vo120t

+((1 = Yng1)I — g1 pL2) S (png1) Zn+1)

- [ozn'ylen +Ynn + (1 =) — O‘n,UL2)S(.Un)Zn} H

| [t 17 L1Znt1 + Yns1Znta

(1= Y1) = ang1pLo)S (fns1)Zn11)

- [Ofn'Ylen + InTn + ((1 - ”Yn)I - O‘H.UL2)S(.Un)Zn}
tanp17b1zn — Ant17L1%n + Ynt1Tn — Ynt12n

(1 = yns1)I = ang1L2)S(pn)zn

—((1 = Y1) — ang1pL2)S(tin)zn |

n1V[[L1ns1 — Liznl| + g1 f[@ns1 — 24|

+H [(1 = An41)I — ang1pLe] [S(n+1)znt1 — S(pn)2n] H
Hant1 — an| V[ Lizn || + lant1 — an|pl| L2S (1n)zn |
+|’Yn+1 - 'Yn|||S(/Ln)Zn - xn”

OfnJrl”YL”InJrl - xn” + 'YnJrl”fEnJrl - fEnH

(1 =yt 1) = a1 718 (n+1) 241 — S(pn) znl|
Flant1 — an| [V Laznll + pll L2S () 20 ]

+|’Yn+1 - 'Yn|||S(/Ln)Zn - xn”
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< OfnJrl”YL”szrl - xn” + 'YnJrl”:EnJrl - zn”
(1 = Ang 1) — @ng17] [”szrl = Tp | + [ Ang1 — Anl[| Az |
+ sup [S(pny1)z — S(un)z|]

z€{zn}
Hlant1 — an| [YILrznl| + pl| L2S (1n) 20 ]
+|’Yn+1 - 'Yn|||S(,un)Zn - xn”
= (1= ansa (7 = VL) nss — 2l
(1 = Yng 1) = ng17] [|)‘n+1 — Anl|| Az, ||

+ sup [|S(pn+1)z — S(pn)2|l]
ZE{Zn}

+lantr — anl [V Lrzall + pl| L2S (1) 2 ]
+n+r1 = Yl 1S (1n) 20 — 20|

< lzngr = zall + [ Ans1 = Al Az, ||
+ sup [|S(pn+1)z — S(pn)z|l
ZE€E{2n
+lantr — anl [YIL1zall + pl| L2S (1) 2 ]
+|’Yn+1 - 'Yn|||S(,un)Zn - xn”
< lzngr — 2ol + [|an+1 = an| + [Vnt1 = Yul + [ Ang1 — )‘nHM

+ sup [[S(pnt1)z = S(un)zll;
ZE{Zn}

where M = sup,,>o { | Az, Y[ L1y || + pl| L2S (1n) 20l [|S () 20 — @} < 0. It follows that

1S (pnt1)Yn+1 — S(tn ) yn||

1S (knt1)Yn+1 = S(pnt1)yn |l + 1S (tn+1)yn — S(tn)
Yn+1 = Ynll + 1S (tnt1)yn — S(pn)yal|

”iEnJrl - zn” + [|an+1 - an| + |7n+1 - 'Yn| + |/\n+1 - AnHM
+ sup [[S(pn+1)z — S(pn) 2|l

z€{zn}

+ sup [|S(knr1)y — S(ua)yll- (3.4)
y€{yn}

IN A CIA

Form the condition (C1), (C2), (C5)-(C6) and 3.4, we have

lim sup (||S(Un+1)yn+1 = S(pn)ynll = 2n41 — xn”) <0.

Applying Lemma 2.9, we obtain

Therefore, we get

nli,néo 1S (kn)Yn — 20l = 0.

lim ||2n,+1 — 25| = 0. (3.5)

Next, we will show that lim, .o ||y, — S (ftn)2n || = 0, by the convexity of || -||? for all ¢ > 1, Lemma

2.7 and (3.3), we have

lyn — ||

IN A

IN

Qc [an'Ylen + Yy + (1 —n) — anﬂL2)S(Nn)Zn] —pl?
||'7n(xn _p) + (1 - 'VH)(S(Mn)Zn _p) + an('Ylen - ML2S(Nn)Zn) ||q
[9n(@n =) + (1 = 72) (S(1n) 20 — p)?

+q<an ('ylen — uLgs’(un)zn), Jq (Wn(xn -p)

+(1 =) (S(kn)2n — D))

+cq||an(7L1xn - uLQS(un)zn)Hq

Yallzn =PI + (1 = ¥0) 1S (k0 ) 20 — pI|?

t+qomn || vLizn — pLaS(pn)zn |

|y (@n = p) + (1 = 70) (S (n)2n — p) 17

teqogl[vLawn — pLaS(pn)zn||
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< llen = pI* + (1 = 3m)llz0 = pl? + and
< Fallon = pI + (1= 50) 120 = I = a9 = coAs™) [ Az — Ap7]
+a, My
= |lzn —pl|" = (1 = ) An(af — Cq/\gz_l)”A:En — Ap||? + o My,
where
My = sup {alyLuan — pLaS(um) 2l (e = p) + (1= 30) (Sn) 2~ p) 7

—I—cqa?flﬂlexn — uLgS(un)anq} < 00.

By the convexity of || - |2 for all ¢ > 1, we obtain

[Znt1 =27 < Bullen —pI? + (1= Bu) 1S (1n)yn — pI|?
< Ballzn = pll?+ (1 = Bu)llyn — ol
< Ballen —pl? 4+ (1 = Ba) [llzn — pl?

—(1 = vn)An(gB — Cq/\gfl)”Alﬂ — Ay||? + an My

o =PI = (1= Ba)(1 = 1) An (a8 = cgAi ") [ Az — Ay]|?
+(1 = Bn)anMj.

By the fact that a” — b" < ra""1(a —b),Vr > 1, we get

(1= Bn)(1 =) An(gB — cgA 1) || Az — Ayl|?

[2n = pl* = [[#n+1 = pIl? + (1 = Bn)an My

dllzn = pll T (len = pll = lznrs = pll) + (1 = Ba)andy

qllzn — qu_l”In — Tl + (1 = Bn)an M.

From0<a<\, <b< (g)q%l, the conditions (C1)-(C3), (C6) and (3.5), we conclude that

lim ||Az, — Ap|| = 0. (3.6)

INIA A

From Proposition 2.1 (ii) and Lemma 2.6, we also have

lzn =2l = [Qc(zn — AMAx,) — Qc(p — M Ap)|?
< <xn—>\ Axyn) — (p— M Ap), J (20 — p))
= ((zn An(Azy — Ap), J (20 — p))
= <$n - p)> - /\n<AfEn - Ap, J(Zn _p)>
1
< 5 [Ill‘n pll2 + llzn = plI* = gllzn — znll] + AnllAzyn — Ap|l||zn — pll.

So, we get
lzn =2l < llzn = plI* = gllzn — zall + 200 [ Az, — Ap|l]|za — pll.

By Lemma 2.8, it follows that

lyn —pI? = 1Qc[anyL1zn + Yn&n + (1 = v0)I — anpLa)S(1n)2n] - pl®
< ||'7n(xn _p) + (1 - ’Vn)( (Mn) ) + an('Ylen ML2S(Nn)Zn) ||2
< va@n =) + (1= 7%) (S(kn) 20 — p) >
+20‘n<7L1$n — L2 S(pin)zn, J(”Yn(xn —-p)+(1- 'Vn)(S(,Un)Zn - p)
tan (VL1xy — pL2S(pn)zn)))
< nllzn =PI + @ = )llzn = pl* + an Mo
< Al =l + (1= 3l =PI — gllen —

200 Az — Aplll|z =l | + 0 Mo

lzn = plI* = (1 =) gllzn = 2nll +2(1 = ) Anl| Azn — Ap|l[l2 — p
+05nM27
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where
My = sup {2<7L1xn — LS (pn) 2ns J (@0 = p) + (1= 7) (S(tn) 20 — p)
+a, (WLlen — /,LLQS(/,LH)Z»”))>} < 0.
We obtain
[2n1 = pl* < Bullzn = pl* + (1= B)IS () yn — pl?
< Ballza = plI* + (1 = Ba)llyn — pl?
< Ballzn = ol + (1= Ba)[lzn = pl* = (1 = m)gllzn — 2
+2(1 = )Ml Azy — Aplll|zn — pll + an Mo
= lza —pl? = (1= Ba)(1 = yn)gllen — 2l
+2(1 = Bn) (1 = yu) Al Az — Aplll|2n — pll + (1 = Bn)an Moa.
Then we get

(1= vn)gllen = zoll < o —plI? = |Z0gs — plI?
+2(1 = Bn)(1 = y)Anl|Azy — Apll|| 2 — pl| + (1 — Br)on M2
< Nan = zoprll(lzn = pll + 2041 = pll)

AN

F2(1 = Bn)(1 = ) Al Az — Aplll|zn — pll + (1 = Bn)an M.

By the conditions (C1)-(C3), (C6), (3.5) and (3.6), we have
Tim gl — zull) = 0.
It follows from the property of g that
nlirrgo |2 — 2| = 0.

Similar to the proof of (3.7), we start by using Lemma 2.5 and Lemma 2.8

||yn _p||2 = ||QC [an'ylen + YnZTn + ((1 - '771)[ - anﬂL2)S(Nn)Zn] - p||2
< ||'7n(xn _p) +(1— ’Vn)(s(/in)zn _p) + an('YLlﬁCn - ML2S(Nn)Zn) ||2
< ||'7n(xn _p) + (1 - ’Vn)(s(/in)zn _p)||2

+2an (YL1n — L2 S(pin) 20, J (Yn (@0 — p) + (1 = 10) (S (tn) 20 — p)
+an (YL1@n — pLoS(pn)zn)))

< '7n||xn_p||2 +(1 _'771)||S(Mn)zn_p||2
— (1 =) 9|70 — S(pn)znll) + an Mo
< Anllzn —pl? + (1 = v) 20 — pl?
— (1 =) 9|70 — S(pn)znll) + an Mo
< Anllzn —pl? + (1 = v0) |20 — pl?
V(1 =) g([|zn — S(pn)znll) + anMs
= zn = pI* = (1 = )90 = S(pn)znll) + cn Ma,
where
M = sup {2<7L1xn — uL2S(pin)zn, J (W (@n = p) + (1= 30) (S (pn) 20 — p)
ta (YLiz, — /,LLQS(/,LH)Z»”))>} < 0.
‘We obtain
[#ni1 —pl? < Bullen —plI> + (1= B[S (n)yn — plI?
< Bulzn —p||2 + (1= B)llyn —p||2
< Bullen —plI> + (1 = ) [llzn — pl?
V(1 = vn)g([|2n — S(pn)znll) + anM2]
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= |lzn — p||2 — (1= B) (= y)g(lzn — S(pn)zall) + (1 — Br)on M.
Then we get

(1= Bu) (1 = vn)g(llzn — S(in)2nll) |2n _p”2 — |lznt1 —p||2 + (1 = Bn)an My
20 — 2ny1 | (|2n = pll + |20t — pll)
—|—(1 — ﬁn)anMQ-

By the conditions (C1),(C3),(C6) and (3.5), we have

<
<

nhjrgo 9([|zn — S(pn)znl)) = 0.
It follows from the property of g that
lim ||@, — S(pn)zn|| = 0. (3.8)

n—oo

Since S(n) is a nonexpansive and from the proof of Lemma 2.12, we get QS (in)zn = S(pin)zn and
observe that

1Yn = S(pn) znl

= HQC [O‘"’ylen + Ynan + (L= )] — O‘nﬂL2)S(/‘n)2n} - S(Nn)ZnH
|| [O‘H'YLIIn + o + (1 —vn)! — anNLZ)S(/Ln)Zn} - S(Un)ZnH
Han ('YLICCn - ML2S(Mn)Zn) + YnlTn — S(Nn)zn)H

< anllyLizn — pLaS(pn)znll + nllzn — S(pn)2nll-
It follows from the conditions (C1), (C6) and (3.8), we get

IN

Jim [y — S(pn)znll = 0. (3.9)
Since
”fEn - S(.Un)xn” < ”fEn - S(un)an + ”S(.Un)zn - S(.Un)xn”
< ||{En - S(ﬂn)znn + ||Zn - xn”u
we have

lim ||, — S(pn)x,| = 0.
Now, we show that z € F := F(S)NVI(C,A). We can choose a sequence {x,, } of {z,} such
that {z,,} is bounded and there exists a subsequence {xnk]} of {x,, } which converges weakly to z.
Without loss of generality, we can assume that x,, — z.

(I) First, we show that z € F(S). Let puy,, > 0 such that p,, — 0 and Ww — 0,k — oc.
Mg

Fix s > 0, we can notice that

||='Enk - S(S)ZH
[/ 1y ] -1
< > IS(G+ Vi) way = Sipny)zn, |
1=0
1S ([s/ s 1) 2. — S [/ ] ) |
IS 18/ lins )2 = S(s)2]|
<[5/ 1S (e n, = T+ e — 2+ |18 (5~ [8/bm,Jon, ) 2 — 2|
S ng)vng — ng
< Sl =l (s~ I/l )2~
ng
. SIS n )z, = zn, |l @, — 2| + max{||S(u)z — 2| : 0 < 1 < fin, }-
ng

For all k£ € N, we have
limsup ||z, — S(s)z|| < limsup ||z,, — 2||.

k—o0 k—o00
Since a Banach space E with a weakly sequentially continuous duality mapping satisfies the Opial’s
condition, this implies S(s)z = z.
(IT) Next, we show that z € VI(C, A). From the assumption, we see that the control sequence {\,, }
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is bounded. So, there exists a subsequence {/\nkj} converges to A\g. We may assume, without loss of
generality, that A,, — Aog. Observe that

1Qc(n, — MAxn,) —Tn |l < Qc(Tn, — AoAZn,) = Yn | + Yns — Tl
< W @n, — AoAxn,) — (0, — AnpAzn,)]l
Hllzn, = S(hn)zng | + 115 (Bny ) 20y, — Yl
< M|Any = Aol + lzny, — S(pny )20,

+||S(Nﬂk)zﬂk ~ Yny ||7
where M is as appropriate constant such that M > sup,,>q{||Az,|}. It follows from (3.8), (3.9) and
An, — Ao that
klggo ||Qc(x"k - )\OAxnk) = Ty, || =0.
We know that Q¢ (I — A\gA) is nonexpansive and it follows from Lemma 2.4 that z € F(Qc (I — M A)).
By using Lemma 2.3, we obtain that z € F(Qc(I — MA)) = VI(C, A).
Therefore, from (I) and (II), we conclude that z € F := F(S)NVI(C, A).

Next, we show that limsup,,_, . (yL12* — puLex*, J4(yn — x*)) < 0, where x* is the solution of the
variational inequality (1.1). Since the Banach space F has a weakly sequentially continuous generalized
duality mapping J, : £ — E* and y,, — z, we obtain that
limsup,, o (YLiz* — pLox*, Jo(yn — x*))

= lim (yLia" — pLaa™, Jy(yn, — 7))
= (yLiz" — pLoz™, Jy(z — ™)) < 0. (3.10)

Finally, we show that {z,} converges strongly to x*. Setting u,, = apyL1zn + Yn2n + (1 —yn)I —
anitLo)S(pin)2n, ¥Yn > 0, it follows from Lemma 2.11, 2.13 and 2.14 that

lyn =29 = (Qcun = un, Jg(yn — %)) + (un — 2%, Jo(yn — 7))
< un =27, Jy(yn — 27))
= ([(1 =) — anpLla][S(pn)zn — ], Jg(yn — 7))
tan(YL1wy — plox™, Jg(yn — %)) + YnlTn — 2%, Jy(yn — 7))
< (L= = an?)lIS(n)zn — 2| lyn — 2*77"
Hyallzn — @y — 2197 + an(yLizn — yLiz™, Jg(yn — )
Fom(yLia™ — pLoa™, Jo(yn — 27))
< =y —an)zn — 2[|lyn — 33*”(171
Hallzn = 2 [lyn — 2771 + any Lz, — a*|l[lyn — 2|47
o (YL1x" — pLox™, Jo(yn — 2%))
< L= an(r = yL)llzn — &*||[lyn — 2|7
tan(vLiz® — pLlox™, Jo(yn — 7))
< Bl =D [ llen = a7+ S = o]
+an(YLix" — pLox™, Jy(yn — x7)),
which implies that
sl < T,
FTE G Tt —op 1h e i =)
< [ =an(r =vD)l|lzn — ™|
+ 4%n (vLiz™ — pLox™, Jy(yn — ™).

14 (g — Van(r — L)
Therefore,
[#n41 — 2|7
< Ballzn — 27|19+ (1 = Bu) 1S (k) yn — 27|
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< Ballzn — 27|19+ (1 = Bo)llyn — 2|7
< Ballon =219+ (1= B) |1 — an(T = vL)][|ln — 27|
Oén * * *
+ a (YLi2" — plox qu(yn -z )>

1+ (¢ —1)an(r — L)
= [ —oan(r =7L)A = Bn)]llzn — pl*
qan(l = Bn)
1+ (¢ —1)an(r — L)
Now, from (C1), (3.10) and applying Lemma 2.10 to (3.11), we get ||, —2*|] — 0 as n — oo. Therefore,
the sequence {x, } converges strongly to z* € F. The proof is complete. O

+ (yLrz® — pLoz™, Jy(yn — ™). (3.11)

Corollary 3.2. Let C' be a sunny nonexpansive retract and nonemply closed convexr subset of a 2-
uniformly smooth and uniformly convexr Banach space E which admits a weakly sequentially contin-
wous generalized duality mapping J : E — E* with the best smooth constant K. Let Q¢ be a sunny
nonexpansive retraction from E onto C, A : C — E be an B-inverse-strongly accretive operator,
S ={S5(s) : s > 0} be a nonexpansive semigroup from C into itself, L1 : C — E be a L-Lipschitzian
mapping with constant L > 0 and Lo : C — E be a k-Lipschitzian and n-strongly accretive op-
erator with constant k,n > 0. Assume {an}, {Bn}, {W}, { M} C (0,1), {un} C (0,00) such that
A} Cla,b) C(0,1),0<p< =, 0<a< N\, <0< %, 0 <~L < 7 where 7 = p(n — K2uk?) and
F:=FS)NVI(C,A) #0. Let {x,} be the sequences defined by x1 € C and

Zn = QC(xn - )\nAxn)
yn = Qc [an'ylen + YnZTn + ((1 - '771)[ - O‘n/‘L2)S(Nn)ZnL
Tn+1 = ﬁnxn + (1 - ﬁn)s(ﬂn)ynu

which satisfy the conditions (C1)-(C6) in Theorem 3.1. Then {x,} converges strongly to x* € F which
also solves the following variational inequality:

(yLiz™ — pLox™, J(z — x*)) <0,Vz € F.

Corollary 3.3. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a q-
uniformly smooth and uniformly convexr Banach space E which admits a weakly sequentially continuous
generalized duality mapping J, : E — E*. Let Q¢ be a sunny nonexpansive retraction from E onto
C, A: C — E be an S-inverse-strongly accretive operator, S = {S(s) : s > 0} be a nonexrpansive
semigroup from C' into itself, Ly : C — E be a L-Lipschitzian mapping with constant L > 0 and
Ly : C — FE be a k-Lipschitzian and n-strongly accretive operator with constant k,n > 0. Assume

{an b, 4B} {7} P} € (0,1), {pn} € (0,00) such that {\n} C [a,b] C (0,1), 0 < p < (=LL)a 7

cqr?

where cq is a positive real number, 0 < a < A\, <b < (g)ﬁ, 0 <~L < T where T = u(n — C"”q:'{q)
and F := F(S)NVI(C,A) #0. Let {x,} be the sequences defined by x1 € C and

zn = Qo(zy, — M\yAxy,)

Yn = Qc |anvL1zy + Y@y + (1 —v0)I — Oén/J,Lg)i fg” S(s)znds],

Tnt1 = Bpn + (1 — 5”)% f(;n S(8)ynds,
which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.1 and assume that

1 tn+1 1 tn
lim sup / S(s)xds — —/ S(s)xds|| =0,
n—oo & tn-‘rl 0 tn 0
C' bounded subset of C, limy, o0 by = 00 and lim,, #“11 = 1. Then {x,} converges strongly to

x* € F which also solves the following variational inequality:
(yLhaz™ — pLox™, Jy(z — ™)) < 0,Vz € F.

Corollary 3.4. Let C be a sunny nonexpansive retract and nonempty closed convex subset of a q-
uniformly smooth and uniformly convexr Banach space E which admits a weakly sequentially continuous
generalized duality mapping J, : E — E*. Let Q¢ be a sunny nonexpansive retraction from E onto C,
A: C — FE be an B-inverse-strongly accretive operator, Ly : C — E be a L-Lipschitzian mapping with
constant L > 0 and Lo : C — E be a k-Lipschitzian and n-strongly accretive operator with constant
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kyn > 0. Assume {an}, {Bn}, {7}, { \n} C (0,1) such that {\,} C [a,b] C (0,1), 0 < p < (L )?11

cqrd ]
q—1,q
Cqlt K

where cq is a positive real number, 0 < a < A\, <b < (g)rll, 0 <~vL <7 where 7 = p(n — =)
and F:=VI(C,A) #0. Let {x,} be the sequences defined by x1 € C' and

Zn = QC(IH - )\nAIn)
Yn = QC [anﬂylen + YnTn + ((1 - '-Yn)] - an,ULQ)ZnL
Tpt1 = BnTn + (1 = Bn)Yn,

which satisfy the conditions (C1)-(C3) and (C6) in Theorem 3.1. Then {x,} converges strongly to
x* € F which also solves the following variational inequality:

(yLha™ — pLoa™, Jy(z — ™)) < 0,Vz € F.

Proof. Taking u, = 0 in Theorem 3.1, we can conclude the desired conclusion easily. The proof is
complete. 1

4. NUMERICAL EXAMPLE

In this section, we illustrate a real numerical example by using main theorem.

1 1 1
Example 4.1. Let E = R, C = [0,1], ¢ = 2, jg = I, ¥ = ot = =, an = fin = —, f = "2,
9 1 6 1 2 3n 2n

Vrn = n7n y A = 2471 and z1 = 1 which satisfy the conditions (C1) — (C6) in Theorem 3.1. We

x

—rzeR-C
define the mappings as follows: Qcz = { || , (S(8)(z) = ze™®, Ax = g, Liz = 22 and

z,x €C

1 1
Lox = 3 (:102 +2x), where A is §—inverse strongly accretive, Lq is 1-Lipschitzian and Lo is 1-Lipschitzian

2
and g—strongly accretive. Then the sequence

22n+1
Zn = Tn y
28n
_In (En 2n —1 n zne V3 (Bn+ 1 zpe /342
Yn = " 6 7 " n 18 )
1 —1
nt n o—1/3n

Tn41 = m Tn + m Yn

converges strongly to 0 shown in Figure 1 and Table 1.

Sequene value
2 &8 8 -

o
¥

o
o

10 20 30 40 50

Iteration step (n)

FiGure 1. The iteration process.
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TABLE 1. The value of sequence {z,}

Tteration step (n) Sequence value (z,,) | Iteration step (n) Sequence value ()
1 1 10 0.456821
2 1 20 0.182023
3 0.915366 50 0.013817
4 0.828039 100 0.000222
5 0.747896 168 0.0000009

Example 4.2. Let F = R? and an inner product (-,-) : R3 x R® — R be defined by
xy)=x-y=a' -y +a-y? +2° " vx = (a',2%,2%),y = (v',4°, ")

and the usual norm | - || : R*> — R be defined by
%[l = /()2 + (562)2 + (29)%.

1 1 2n —1 6n —1
LetC:{XER?"HxHSl},Fy:u:§,an:u = ,5n—%7”¥n n7 y An = n4n and
x1 = (1,2,3) which satisfy the conditions (C1) — (CG) in Theorem 3.1. We define the mappings as

C 1
follows: Qex = ¢ [[x||’ x ¢ , (S(9))(x) = xe™%, Ax = X Lix = x? and Lox = —(x? + 2x), For
x,xeC 2 3
n=1,...,6, we have the sequence
z, = Zn
A
Y,
yW, = I
1Y
n+1 n—1 —1/3n
Xn+1 = Xp + Ynt s
2n 2n

where

22n +1
Zn: n )
x ( 28n )

X, [(Xp 2n-—1 Zne Y3 (5p 41 znefl/% + 2
n 6 7 n ™m 18

For n = 7, we have the sequence

22n+1
Zp = Xp ;
28n
Yo = 0T
1Yl
n+1 " n—1 ~1/3n
Xpt1 = X n€ ,
+ 2n 2n Y
where
_ X (Xp 2n -1 n Zne Y3 (5p 41 znefl/% +2
T n \ 6 n n 18 '
For n = 8,9,10,..., we have the sequence

22n 4+ 1

- (5 )
Xn (Xn 2n—1 zne_1/3" Sm+1 zne_1/3"+2
n 7 )+ n < ™ 18 )
”+ ”_1 —1/3n

Xn41 = Xn m Yn€

Then the sequence converges strongly to 0 = (0,0,0), shown in Figure 2 and Table 2.
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;.
§15
g
Iteration step (n)
FI1GURE 2. The iteration process.
TABLE 2. The value of sequence {x,}
1 1 2 3 10 | 0.229555 | 0.480061 | 0.753976
2 1 2 3 20 | 0.090760 | 0.191436 | 0.303513
31 0.794057 | 1.603757 | 2.429100 | 50 | 0.006872 | 0.014536 | 0.023119
41 0.598144 | 1.220303 | 1.867191 | 100 | 0.000110 | 0.000233 | 0.000371
5| 0.457286 | 0.940376 | 1.450720 | 174 | 0.0000003 | 0.0000006 | 0.0000009
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Abstract

In this research, we focus on a common fixed point problem of a nonexpansive semigroup with the generalized viscosity
methods for implicit iterative algorithms. Our main objective is to construct the new strong convergence theorems under certain
appropriate conditions in uniformly convex and uniformly smooth Banach spaces. Specifically, the main results make a contri-
bution to the implicit midpoint theorems. The findings for theorems in Hilbert spaces and the other forms of a nonexpansive
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1. Introduction

Let E be a real Banach space, C be a nonempty closed convex subset of E and E* be the dual space of
E with norm | - || and (-, -) pairing between E and E*.

e The duality mapping J : E — 2F is defined by
J(x) = {x* € E*: (o, x*) =[x, [x*[| = IIx[|}

for all x € E. It is well known that if E is a Hilbert space then ] is the identity mapping, and if E is
smooth then ] is single-valued.
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e A mapping T: C — C is called a nonexpansive, if
Mx=Ty[| < [x—yll, ™yeC
and F(T) = {x € C: Tx = x} is the set of fixed points of T.
e A mapping f: C — Cis called a contraction, if there exists o € (0,1) such that

1100 = fY)ll < elx —yll, ¥,y € C.

e A family § = {S(s) : 0 < s < oo} of mappings of C into itself is called a nonexpansive semigroup on C
if it satisfies the following conditions:

(1) S(0)x =x for all x € C;
(i) S(s+t) =S(s)S(t) forall s,t > 0;
(iii) [|S(s)x —S(s)y|| < [[x —yl for all x,y € Cand s > 0;
(iv) for each x € C, the mapping S(-)x from [0, co) into C is continuous.

§,ie, F(8) ={x € C:S(s)x =x,Vs > 0} is a common fixed point set of a nonexpansive semigroup.
It is easy to see that F(8) is closed and convex (see also [1, 2, 3, 4, 5, 6, 7, 8]).

Definition 1.1. A mapping 1} : RT — R™ is called an L-function if {(0) = 0,4 (t) > 0,Vt > 0 and for every
s > 0 there exists u > s such that
P(t) < s, fort e [s,ul.

Note that every L-function 1 satisfies \(t) < t,Vt > 0.

Definition 1.2. Let (X, d) be a matric space. A mapping f : X — X is said to be:

(i) (U, L)-contraction if P : Rt — R is an L-function and d(f(x),f(y)) < ¥(d(x,y)) for all x,y € X with
X7 Y;

(ii) Meir-Keeler type mapping if for each € > 0 there exists 6 = d(e) > 0 such that for each x,y € X with
d(x,y) < e + 6 we have d(f(x),f(y)) < e.

Theorem 1.3. ([9]) Let (X, d) be a metric space and f : X — X a mapping. Then the following assertions are
equivalent:

(i) f is a Meir-Keeler type mapping;

(ii) there exists an L-function \ : R™ — R™ such that fis a (\, L)—contraction.

Proposition 1.4. ([10]) Let C be a convex subset of a Banach space E. Let f : C — C be a Meir-Keeler type
mapping. Then for each € > 0O there exists v € (0,1) such that for each x,y € C with ||x —y|| > €, we have

[0x) = F)I| < rlPe =yl

Now, a Meir-Keeler type mapping or (1, L)—contraction is called generalized contraction mapping.
We suppose that the function 1\ based on the definition of the (1, L)—contraction is continuous and
strictly increasing and tlim n(t) = oo, where n(t) = t—(t),t € R*. In consequence, we have that 1 is a

— 00

bijection on R*.
In 2015, the viscosity implicit midpoint theorem in Hilbert spaces was introduced by Xu et al. [11]:

X1 = nf(xn) + (1— )T <%> n 0. (1.1)

In the same year, Ke et al. [12] introduced the two viscosity implicit midpoint theorem in Hilbert spaces:

Xnt1 = xnQ(xn) + (1 — an)T(snxn + (1 —sn)Xn41), (1.2)
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and
Xn+1 = &nXn + BnQ(xn) + YnT(snxn + (1 = sn)Xn41)- (1.3)

One year later, Yan et al. [13] introduced an implicit iteration for a generalized contraction mapping
in Banach space:
Xnt1 = onXn + Bnf(xn) +¥nT(snxn + (1 —sn)xni1). (1.4)

They proved the strong convergence theorems.

Motivated and inspired by the idea of Yan et al. [13]. We introduce the new implicit iterative scheme
and the new implicit midpoint rule with viscosity approximation method based on a generalized contrac-
tion mapping for finding solutions of fixed point problems for nonexpansive semigroup. We shall prove
the strong convergence theorems in uniformly convex and uniformly smooth Banach space under some
parameters controlling conditions. Our results extend and improve the recent results of Yan et al. [13]
and other authors.

2. Preliminaries

According to our framework throughout this research, we first preview some definitions involving a
Banach space E as follows. Let U ={x € E: x| = 1}.

e E is said to be uniformly convex if, for any e € (0,2], there exists & > 0 such that, for any x,y € U,

+y

Ix —y|| > € implies HXT <1-0o.

It is known that a uniformly convex Banach space is reflexive and strictly convex.

t _
e E is said to be smooth if lirré w
t—

It is also said to be uniformly smooth if the limit is attained uniformly for all x,y € U. The modulus of
smoothness of E is defined by

exists for all x,y € U.

1
p(t) =supq S (x+yl[+Ix—yl) =1:xy et x| =1yl =7,
2

where p : [0,00) — [0, o) is a function.

It is known that E is uniformly smooth if and only if lirr}J @ =0.
T—

A Banach space E is said to satisfy Opial’s condition if for any sequence {x,} in E, xn, — x(n — o0)
implies
limsup [|xn —x|| < limsup ||xn —yl|,Yy € E with x #y.

n—oo n—oo

By [14, Theorem 1], it is well known that if E admits a weakly sequentially continuous duality mapping,
then E satisfies Opial’s condition, and E is smooth.
The following lemmas are very useful for proving our main results.

Lemma 2.1. ([15]) Let {xn} and {yn } be bounded sequences in a Banach space X and let {3+, } be a sequence in [0, 1]
with 0 < liminf,, o Brn < limsup,_,  Pn < 1. Suppose xn 1 = (1 — Pr)yn + Pnxn for all integers n > 0
and limsup,, _ _ (|[yn+1 —Yn| = [[Xn+1 —xnl]) <O0. Then, limn o |[yn —xn| = 0.

Lemma 2.2. ([16]) Let C be a nonempty closed and convex subset of a uniformly smooth Banach space E. Let
T : C — C be a nonexpansive mapping such that F(T) # () and f : C — C be a generalized contraction mapping.
Then {x} defined by x¢ = tf(x¢) + (1 —t)Txy for t € (0,1), converges strongly to x* € F(T) as t — 0, which
solves the variational inequality:

(f(x*) —x*,J(z—x")) <0,Vz € F(T).
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Lemma 2.3. ([16]) Let C be a nonempty closed and convex subset of a uniformly smooth Banach space E. Let
T : C — C be a nonexpansive mapping such that F(T) # (0 and f : C — C be a generalized contraction mapping.
Assume that {x} defined by x = tf(x¢) + (1 —t)Txy, converges strongly to x* € F(T) as t — 0. Suppose that
{xn} is bounded sequence such that xn, — Txn — 0 as 1 — oo. Then

lim sup (f(x*) —x*, J(xn, —x*)) < 0.

n—oo

Lemma 2.4. ([17]) Assume {a,} is a sequence of nonnegative real numbers such that
ani1 < (1—op)an +061, >0
where {on } is a sequence in (0,1) and {5} is a sequence in R such that
(1) 2 Fqon =00
(2) limsup,, i—z <0or Y 3 4 [dnl < oo.

Then limn o0 0 = 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and § = {T(t) : t > 0} be a nonexpansive semigroup
from C into itself such that F(8) # 0. Let {xn,} be the sequences defined by x; € C and

Zn = AnXn + (1 = An)Xny1,
Yn = Onf(xn) + (1 —0n)zn, (3.1)
Xn41 = XnXn + an(xn) +'YnT(U—n)1Jn/
where {otn }, {Pn ), {¥n), {0n) and {An} are the sequences in (0,1). The following conditions are satisfied:
(i) tn+PBn+vn=1
(i) lim B, = lim 6, = lim p, = lim |61 —an|= lim A1 —An| =0and
n—oo n—oo n—oo n—oo n—oo

lim sup ||T(ni1)x — T(pn)x|| =0, C bounded subset of C;
n—>ooxe(~:

(ii)) 0 < liminf &y, < limsup an, < 1;
n—oo n—oo

(iv) Z B =ooforalln > 1.

n=0

Then {xn } converges strongly to x* € F(8) which also solves the following variational inequality:
(IT—AF)x*, J(z—x")) <0,Vz € F(8). (3.2)

Proof. First of all, we prove that {x,} is bounded. Let p € F(8), we have

[yn =PIl < Snllf(xn) =Pl + (1 —8n)llzn —pl|
< dnllf(xn) = f(P) + 8nlf(p) —pll + (1= 8n)llzn — 7P|
< dnlxn — [l 4 dnllf(p) = pll 4+ (1= 8n) Anllxn — Pl + (1= An)|[Xn41 — ][]
= [onP+ (1= 8n)An] [xn =Pl + Onlf(p) =Pl + (1 =8 ) (1 —An)IXni1 — Pl
and
[xnt1 =Pl < anlxn =pll+ Bnlf(xn) =Pl +VnlT(kn)yn — Pl
< anlxn = pll+ Balf(xn) = f(P) + Bullf(p) =Pl +vnllun —pll
< onlpxn =l + Badlxn =l + Bnllf(p) —pl|

FYnABnd + (1= 8n)Anl [xn = Pl + 0n[[f(p) = Pl + (1 = 80 ) (1 = An)Ixni1 — P}
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= [oan +Bnd +Vndnd +vn(1—=8n)Anl xn =Pl + (Bn +¥ndn)[[f(p) — Pl
FYn(1—=30)(1 = An)[[xns1 — Dl

= D—=yn(1=8)1—=2An) = (Bn +vndn)(1 =) [[xn — Pl + (Bn +¥ndn)[[f(p) — Pl
FYn(1—=30)(1 = An)[[xns1 — Dl

= D—vn(1=80)(1=2An) = (Bn +¥ndn)nl [[Xn =PIl + (Bn +¥ndn)in ' [[f(p) = pl|
FYn(1—=8n)(1 = An)[[xns1 =PIl

[Xn41 =Pl

It follows that

[Xn41 =Pl

INCININ

<

nl[xn =Pl + Bnllf(xn) =Pl + Ynl T(kn)yn — |

onl[xn =PI+ Bnllf(xn) =PI+ Bnllf(p) — Pl + Vnllun — Pl

on[[xn =Pl + Bal[xn =l + Bnllf(p) — Pl

FYnlond + (1 —8n)An] [xn =Pl 4+ nllf(p) =PIl + (1 = ) (1 — An)[[xn+1 — P}
[on 4 B +Vndn +vn (1 —0n)An] [xn =Pl + (Bn +vndn)[f(p) —p|
+Yn(l—0n)(1— )\n)HXn+1 _pH

1—vyn(1=8)(1—=An) = (Bn +¥Yndn)(1—1)] HXn —DH + (Bn +Yn5n)”f(p) _p”

+yn(l1—=0,)(1— )\n)HXn+1 _pH

1 —vn(1=0n)(1=2An) = (Bn +Vndnnl HXn —DH + (Bn +Yn5n)nn_1”f(p) _p”
)

FYn (1= 0n) (1= An)lIxn1 —pll.

(Brn +7vVndnm
1—vyn(1—=01)(1—An

. (Bn +7vndnm
1—vyn(1—=0)(1—An

) [xn —p|| + )n’le(p)—p\L

By induction, we conclude that

[%n — Pl < max {|x1 —p|,n f(p) —p|},¥yn >0.

This implies that {x,, } is bounded, so are {f(xn )}, {Un}, {T(1n)un} and {zn}.
Next, we will show that limy, . ||Xn+1 — Xn|| = 0 and we observe that

lzns1—znll

[Un+1—ynll

N

NN

[Anr1xn1 + (T =Ang1)xns2) — Anxn + (1= An)xn 1)

Ant1Xn+1 — Anp1Xn + Anp1xn + (1= Anp1)xns2

—(1— 7\n+l)xn+1 +(1— 7\n+l)xn+1 —Anxn —(1— An)XnJrl ”

[An+1(Xn41—%n) + A1 = An)xn + (1= Ans 1) (ng2 = Xnp1) + (An = A1 )Xl
Al =Xl + P = Ml (fxn ]l + [xns1 ) + (1 = Anga) [[xns2 — xnal,

[ (Ont1flens1) + (1 =8nt1)znt1) — (Bnf(xn) + (1= 8n)zn) ||

[on+1f(xn+1) = dn41f(xn) + 0nt1f(xn) + (1 —Ont1)znt1

—(1=8n+1)zn + (1 = 8n41)zn — Onflxn) — (1 —8n)znl|

[on+1(f(xn+1) — f(xn)) + (1 — ) f(xn) + (1 = dnt1)(znt1 — 2zn)
+(0n — Ont1)zn|

On 1 l[f(xnr1) — f(xn)l| + 101 — Onl(If (x|l + llznl) + (1 = 8n 1) lzns1 — znll
Snr1W[[xXn1 — X || + 1041 — nl([[f(xn)[| + [[znl]) + (1T = 0nt 1) AntalXn1 — xn|
HAn+1 = Anlllxnll + (a1 ll) + (1= A1) [[xnt2 = Xn 4]

(On 1 + (1= dn ) An 1) Xns1 — Xn |l +10n41 — dnl([fOen) || + [|zn |])

(1= 0nt+1)Ant1 = Anlllxnll + [xnall) + (1= 8n41) (1 — Ana)[xnt2 — Xnall,
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and

[Xn+2 = Xn41ll

It follows that

IXn4+2 — Xn41l

N

N

N

<

| (otn1xn41 + Brs1fOens1) + Yna T(Hnt1)yn+1)

— (otnxn + an(xn) +YnT(Hn)Un) ”

[otnt1%n+1 — onp1xXn + ons1xXn + Bra1f(xng1) = Brarf(xn) + Brafxn)
Y1 T(Hn1)Yn+1 = Ynaa Tn)Un + Yra T(Hn ) Un — dnxn — Bnf(xn)
YT () ynl|

lotns1(Xns1 —Xn) + Brs1(f(xn1) — fxn)) + Ynr1 (T 1) Ynt1 — T(Hn)yn)
Hlotni1 — an)xn + (Bt — Br)f(xn) + (Yni1 —¥n) T )yn||

g1 Xng1 = Xnll + Bt [f(xnr1) — FO) | + Yt T )Uns1 — T(Hn)yn ||
Flotn 1 — anllxn |l +1Bns1 = Brlllf(xn)ll + Yne1 = vall T(un yn |

on 1l Xn+1 = Xn |l + Bnt1dXn+1 — xa|

FYntt (IT(ns1)Yn+1 = Tlne)Unll + [ T(a)yn = T(en)yn|)

Hotn1 — otnllxn|l +Brnsr1 — BrlllfOn) | + Yt —Valll T(un)ynl|

(i1 + Brnr1P)Ixnt1 —xnl| +Vnt1 sup [ T(Hnt1)y — T(pn )yl
ye{yn}

+|(Xn+1 - o‘n|”xn” + |Bn+1 - Bn|”f(xn)” + |Yn+1 _'Yan(l»ln)UnH
+Yn+1HUn+1 _Un”

(g1 + BnJrlll))HXnJrl _XnH +VYn+1 sup HT(HTL+1)U - T(Hn)UH
UE{yn}

o1 — ol xn | +1Bnt1 = Brlllfxn) || + b — Yl T(Hn ) yn ||
FYn+1l0n+10 + (1 = 8nr1)An 1) [[Xn+1 — Xn |l +18n+1 — Snl ([T ) || + [[2n )
+(1 = 0n+1)Ant1 — Anlllxnll + [Pxn1ll) + (1= 8n41) (1 — A1) [[xn+2 — Xnal]
(1 + Bt +Yn1dn 1P +Ynr1 (1= dns1)Ans 1) [Xni1 — x|l

+Yn+1 sup HT(IJn+1)U - T(IJTL)UH + |(Xn+1 - (Xnmxn” + |Bn+l - Bn|”f(xn)H
ye{yn}

+|Yn+l _Yn|HT(|>ln)UnH +Yn+l|6n+1 - 6n|(Hf(Xn)” + ”Zn”)
FYnt1(1 = 0ns1)Ans1 — Anl(|Xnll + [Xn1l])
+Yn+1(1 - 6n+1)(1 - 7\n+l)HXn+2 —Xn+1 ”

1 —vn1(1=0n41)(1 —=Ani1) — (Brs1 + Vns1dn1 )l Hxn+1 _XnH
+Yn1 sup HT(HTL+1)U - T(Hn)UH + |O‘n+1 - 06n|\|Xn|| + |Bn+1 - Bn|||f(xn)”
UE{yn}

+h/n+1 _Yn|HT(Hn)UnH +Vn+1|6n+1 - 5n|(Hf(Xn)H + HZTIH)
FYn1(1 = dng1)Ans1 — An|(||xn|| + ||Xn+1H)
FYn1(1—dn41)(1— }\n+l)‘|xn+2 _Xn+1||'

o (Brnt1 +¥Yn+10n+1)m
1—vn1(1=0np1) (1 —Ang1)

Yn+1
+ su T -T
1—vYn1(1=0n41)(1 = Ang1) ye{lfn}H (bnt1)y (un )yl

1

[Xn1 = xnll

|O(n+1 - O(n| ”3n+1 — Bn|
+ Xn || + f(xn)
Tyl —sm) 0= I T = s a = O
h’n+1_Yn|

+ T(pun)
T ymia 1= mr) A=Ay |1 B lunl
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+

|6n+l - 6nh’n+1

1—vni1(1=0n41) (T —Any
Ant1 —Anlyng1(1—0n41)

(Ol + llzn )
1)

1—vn1(1—=0n1)(1—
(Brnt1+VYns1dni1n

N

S e+ )

i

1Ty (1= 8 ) (T —Ant1)

[Xn1 = xnll

Yn+1
+ su T( Jy—T(un)
T Ym0 b ) (L Agn) P [T(nsaJy = Tl
1 |41 — &n IBrt1— Bnl
1—=Yne1(1=0n41) (1 =Ang1)  1T—=vnp1(1=8ny1) (1 —Any1)
1 Yn+1—Ynl 10n+1 — Onlyn+t1

1 _Yn+1(1 - 6n+1)(1 - )\n+1)
A1 — Anlyng1(1—0n41)

T—vYnt1(1=0n1)(1—Any1)

+

1—vYnt1(1=0n41) (1 —Ang1)
where M = sup {||xn ||, [[f(xn)] + || T(

n>1

Setting xn4+1 = (1 — oty )Wn + anxn for all m > 1, we see that wy, =

Xn42 — Xn4iXn4l

]M
Hn ) un [l (O + lznll, enll 4+ x4l < oo

Xn+1— EnXn

, then we have
1— o

W1 —wnl|

1—oni1
Brt1f(xn+1) + Ynt1 T(Hn+1)Yns1 B Brf(xn) +¥nT(Un)yn

1—oani1 I—an
_ Bri1f(xni1) +Yni1T(Hnt1)Yni1 B Br1f(xn) Br1f(xn)
1— o1 1—ani1 1—oni
_Yn+1T(Hn)Un VnJrlT(H»n)Un . an(xn) +VnT(Hn)Un
1—otni1 1—otni1 1—on
_ Brt1 Yn+1
= ———— (f(xn41) = f(xn)) + ———— (T(Hn+1)Un+1 — T(Hn)Un)
1—ont1 1—onp
l—on1 1—oan l—onr 1—oan
- HM (1) — £06)) + 2 (Tt 1)y 1 — Tk )y
1— o1 1—ont1
+ Bn+1 o Bn f(Xn) + Bn - BT\.+1 T(un)yn
1—an1 1—oan l—on 1—oni1
< P ) = )+ Tl JUnt — Tl )y
1— o1 1—ani1
BT\.+1 Bn
+ - (”f(xn)H + HT(FLTL)UTLH)
1-— Xn+41 1-— n
BT\.+11|) BT\.+1 Bn
S T—w - - f T
T— otn ”Xn+1 XnH + T— otn 1— o, (H (Xn)H + H (Hn)UnH)
+1’Yn7+l (HT(HnJrl JYni1— T(HnJrl)UnH + HT(HnJrl)Un - T(Hn)UnH)
— Kn+1
N e L= L W {0 S (YN )
1-— Kn+1 1-— Xn+1 1— Xn
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<

N

N

N

v Y
+1n7+l”yn+l _UnH + 1n7+1 sup HT(IJn+1)U - T(u“)yH
— Oyl %t yelyy)
Bl s [Tl )y — Ty
1— Gnt1 L=ttt yepy,)
4 Pt B | )1 T (s )y )
—Xny1 1—an
P Bnnb 4 (=S ) xan = x|+ 18041 = Sul(f x| + lzn)
- Un+

+(1 - 6n+1)|)\n+1 - An|(”xn” + HXn+1”) + (1 - 6n+1)(1 - )\n+1)HXn+2 _Xn+1H]

1
Brnt1P + Vnr1dnr1¥V +vYn1(1 = 8np1)Anp1l HXnJrl - Xn”

1—ani1
P sup [Tl )y = Tyl + o = B )]+ Tk Jyn )
— Xn41 ye{yn) 1-— Kn+1 1-— Xn
b s = Sl () | llza ) + 2 (1= 8 1) At — Anl(xn ]l + [Xnl)
1—oani1 1—oni1
+1Yn7+1(1—5n+1)(1—7\n+1)”xn+2—xn+l”
— Kn+1
1
17 [BnJrlll’ +Vn+15n+111’ +VYnit1 (1 — 6n+1))\n+1] HXnJrl - Xn”
— Kn+1
22 sup [Ty = Tl + |22~ B () + [Tl )
— Xn41 ye{yn} 1-— Kn+1 1-— Xn
I s — Sl ()] + 2l + — (1= 8 Ant — Anl(xn ]l + [xna])
1—oani1 1—oan
Yn+1 (Bnt+1+ VYnt+10n+1m ]
+—(1-5 1—A [1— X —X
1—0Cn+1( nr1)l nH){ 1—vnt1(1=0n41)(1 —An41) Pensr =xal
Yn+1
+ su T( Jy—T(un)
T vt Sy )~ Ayy) P [Tty = Tln )yl
i |0(n+1 - O‘n| + |Bn+1 - Bn|

1—=vVnt1(1=0n1)(T—=Ang1)  1—vYnp1(1=0np1)(1—Ani1)

h/nJrl _Yn| |6n+1 - 6nh/n+l
1—vVnt1(1=0np1)(1—=Ang1)  1—=VYnt1(1—0n41)(1—Any1)

|)\n+1 - Anh’n+1(1 - 5n+1)

+

+ M
1_Yn+1(1_6n+1)(1_7\n+1) }
1
17 [Bn+11|) + Yn+16n+11|) +Yn+1(1 - 6n+l))\n+1
_(Xn+1
+Yn+1(1 - 5n+1)(1 _)\n+1)] ”Xn+1 _XnH
2 sup [Ty = Tyl + |25 = 2B (0l + [Tl )
~ Xntl yefy,) —ony1 1—om
I s = Sl ()] + 2l + — (1 = 8 Ant — Anl(xn ]l + [xna])
1—oani1 1—oan

Yn+1 Yn+1
+—(1-2 1-A sup ||T —-T
1—ocn+1( n)( n+l){1_yn+1(1_6n+l)(1_7\“+1)ye{fn}H (Unt1)y = T(un)y||
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|(Xn+1 - (Xn| |Bn+1 - Bn|
1—=Yne1(1=0n41)(1=Ang1)  1T—=vYne1(1=8ny1) (1 —Any1)

Yn+1—Ynl n 101 — Onlynt1
1—=vYne1(I=0n41)(1=Ang1)  1T—=vYnp1(1—=0ns1)(1 —Any1)

A —A 1-56
| n+1 n|Yn+1( n+l) )] M}

+

+

T—vn1(1=0n1)(1—Ang1
_ [1 ~ (Bnt1+¥Ynt18n41)m

} —

1—on1
Y )
1“7“ sup || T(pns1)y — Tlun )yl + ‘1 nt1 Pn O+ 1T () yn D
T &n+1 yefyn) — Kn41 1—on
s = Sl e |+ lznl) + e (1= S 1) A1 — Al |+ [Pxnsa )
1—O(n+1 1-— n+1
Yn+1 Yn+1
F——(1=0n41)(1 —Ant1) sup ||T( Jy—T(un)
o oA T s A S Ty Tyl
|(Xn+1 - (Xn| |Bn+1 - Bn|
- -
1 _'YnJrl(l - 6n+l)(1 - )\n+1) 1 _'YnJrl(l - 6n+1)(1 - )\n+1)
1 |Yn+l —Ynl n |6n+1 — 6n|’Yn+l

1—=vYne1(1=0n41)(1=Ang1)  1T—=vYnp1(1—=0n11)(1 —Anyp1)
A —A 1-56
| n+1 n|Yn+1( n+l) M}

T —vn1(1=0n 1) (1 —Any1)
limsup([[wn 1 =wnll = [[xni1 —xn ) <O.
n—oo

Applying Lemma 2.1, we obtain lim ||wyn —xn | = 0 and by setting {wy, }, we also have
n—oo

+

Therefore,

lim [ i1 —xn | = 0. (3.3)

Next, we will show that limy, . [[xn — T(pn )xn || = 0. We observe that

[zn —%nll = (1=2An)[Xnt1—Xnll
and
[yn —znl = 5n”f(x) —zn|,
which imply that
lim ||zn —xn| =0
mn—0oo
and
lim |jyn —zn|| =0.
n—oo
Therefore, we conclude that
Tim [[yn —xu] =0. (34)

Consider that

[xn = Tlun)xnll < xn —xng1ll + X1 — Tlpn)xa |

[Xn = Xni1ll + [lenxn + Bnflxn) +¥nT(Hn)yn — Tlpn)xn |

[Xn —xni1ll + onllxn = Tlpn)xnl| + BrllfOen) = Tra)xn || + vnll T(n)yn — Tk )xn ||
[Xn —xni1ll + onllxn = Tlpn)xnll + BnllfOen) = T(ra)xn | + vnllyn —xnl,

NN
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which implies that

1
o = Tltn Dl € Tl = Soall + T2 ) = T | + 122 =
It follows from the conditions (ii), (iii) and (3.4), we get
nlggo [Xn — T(un)xn| = 0. (3.5)

Now, we show that z € F(§). We can choose a sequence {x,, } of {x,} such that {x;,, } is bounded and
there exists a subsequence {Xnkj} of {xn, } which converges weakly to z. Without loss of generality, we can
HT(I’Lnk)XT‘-k — XnkH

p‘ﬂ.k

— 0,k — 0. Fix t > 0, we

assume that x,,, — z. Let u,,, > 0 such that p,,, — 0 and

can notice that

[t/ pn, J-1
1=0
+| T (/i) %y — T([E/ pny Jun, ) 2|
+|| T([t/ tny I ptn, )z — T(t)z]|
< It/ T (g Xy, = X [l ey, = 2l + (| T (= [t/ i J1n, ) 2 — 2|
T _
< t” (an)xnk XnkH + ||Xnk _ZH + HT(t o [t/an]an)Z— ZH
L33
< el Zmll o e Tz — 2] £ 0 < 1 <
L33

For all k € N, we have
limsup |[xn, — T(t)z|| < limsup [|xn, —z||.
k—o0 k—o0
Since a Banach space E with a weakly sequentially continuous duality mapping satisfies the Opial’s
condition, this implies T(t)z = z. Therefore, z € F(8).
By Lemma 2.2, the sequence {x{} is defined by x; = tf(x¢) + (1 —t)Tx¢ such that t € (0,1) which is
converses strongly to a fixed point x* € F(8) and solves the variational inequality:

((f —=Dx*, J(z—x*)) <0,Vz € F(8).

It follows from Lemma 2.3 and (3.3)—(3.5), we conclude that

limsup((f — I)x*, J(yn —x*)) <0 (3.6)
and
limsup((f — I)x*, J(xn41 —x")) < 0. (3.7)

Finally, we show that {x,,} converges strongly to x* € F(8). Assume that the sequence {x,,} does not
converse strongly to x*, there exists a subsequence {xn,, } of {xn,} and e > 0 such that ||xn, —x*[| > €,Vk =
1,2,.... For this € there exists r € (0,1) such that

[10en, ) = FX < ey =7



C. Jaiboon, S. Plubtieng, P. Katchang, J. Nonlinear Sci. Appl., ? (201?), 1-? 11

We compute that

”Unk _X*Hz - <Unk —x" ] Yn, — X )>
= <6nkf Xnk (1 6n )an X*/ I(ynk - X*)>
= (O, (flxn) =x") + (1 = 8n, ) (zn, — %), J(Yn, —x7))
= dn, <1‘(Xnk f(x7), ](Unk X))+ 0, (F(X™) = X%, J(yn,, —x*))

) —
+(1=dn ) {zn, —x*, J(Yn, —%7))
= On, (f (Xnk) f(x"), J(yn, — X)) + 0, (F(x") = X7, J(yn, —%7))
+( — o ) A X, + (1= A )xn — X5 J(Yn, —X7))
= O, (fOxn, ) = T(x7), J(yny — %)) 4 8, (F(X7) = %7, J(yn, — x7))
( — 3, J(An, ey = X7) + (1= An ) (Xnyy —X7), J(yn,, —x7))
= O, (fOxn, ) = T(x7), J(yny — %)) 4 8, (F(X7) = X7, J(yn, —x7))
( 6nk) T‘-k<XT‘-k x* ](ynk_x )>+(1_6nk)(1_)\nk)<xnk+l_X*’](ynk_x*)>
on [[Xny = X [[[un, — x| 4 0, (F(x™) =X, T(yn, —x"))

H =8 ) An [Py = X [y =X 4 (1 =80, ) (1= A ) lymye =X [eny = x

1 * * * * *
[Ténk +(1- 6nk))\nk]§ (”Xnk —X Hz + ”ynk —-X Hz) + 5nk<f(x ) —x7, ](Unk —X )>

N

il

N

1 ¥ *
F(1 =8, ) (1= An )5 ([yme =X + ey, =)
Ton, +(1—0n,)A 1—06n,(1—1)

- oy, — x| =y, — 72
1—0n,)(1—A
+6nk<f(X*) _X*/ ](ynk - X*)> + ( nk)2( nk) HXle+1 - X*Hzl
which implies that
Ton, + (1 =01, )A 20n,

=y, — x|+

[yn, — x> < (F(x*) =x*, T(Ymy, — X))

1+ 50, (1—1) T+ 50, (1—1)
(1—0n)(1—2n,)

* (12
1+6nk(1 ) H nk+1 —X ” .

We observe that

<Xnk+1 - X*' ](Xnk+1 —x" )>

<Cx’nkxnk + Bnkf(xnk) +YnkT(unk)ynk - X*' ](Xnk+1 - X*)>

(& (xXnye = %) + By (F(xny ) = X7) + Yy (T(Hny JYnye =X7), J(Xnyy —%7))
= Ony <Xnk - X*' I(Xnk+1 _X*)> + Bnk <f(xnk) - f(X*)' I(Xnk+1 - X*)>

+Bnk <f(X*) _X*/ ](Xnk_H - X*)> +’Yﬂ.k <T(Unk )ynk - X*, I(Xnk+1 _X*)>

”Xnk+1 _X*Hz

<y e = X e =X+ By xng =X Hixn, ., = X7l
By (FOXT) = x5, Ty = X)) + Y [yme =X Ixny g =7l
1 * * * * *
<oy F B 5 (o = XTI+ Py =X 17) + By () =X, T (g0 =)

1 * *
ey (ne =X 2+ g, =)

_ *||2+ O(le +TBT11<
2

B, (F(X7) = %7, J(xnyy —X7)) +

On, + 13 2
= Ty, s ="
’Yﬂ.k

* Y
2y, — 7|12+ Lo

7 ”Xnk+1 —x" Hz
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x +r * % +T * * * *
S L Y L P B L)
ynk PV 2 Ynk rénk‘i’(l_énk))\nk ok 2
+ 2 Hxnk+l X ” + 2 1+6nk(1_r) HXnk X ”
28y, (1-06n,J)(1—2n,) 2
f(x*) — *, VL k k ok
+1+5nk(1—1’)< (X ) X ](ynk X )>+ 1+5nk(1—1‘) HXT‘-k+1 X ”
— (Xle + TBle _I_ Ynk Ténk + (1 - 6ﬂk))\ﬂk ||)(n-k o X,*HZ
2 2 14 on (1 1)
O(le +TBle Ynk Ynk (1_6ﬂk)(1_)\ﬂk) o2
+[ > T2 T < 1+ 60, (1—1) Py =7
Ynkénk

FBa () =X Ty =X + (F(x") =X, T (Y, —x7))

14+0n, (1—1)

i (1 —Yn, — Bnk(l —1)) (1+ 6nk(1 —71)) + Yy (rénk +(1— 5nk))\nk) HX _X*Hz

B 2(1+48n, (1—1)) e

(1 - Bnk(]- —T)) (1 +6nk(1 _T)) +Ynk(1 _Snk)(]‘ —Ank)
2(148n, (1—1))

Tléﬂ.
B (10) = Ty =X g gy () =X Ty, =)

+ HXT‘-k+1 _X*”z

It follows that

(1_Ynk - Bnk(l_T)) (1+6nk(1_r))+ynk (rénk+(1_6nk))\nk) 2
[[xn, — x|

k(12
e = S T T T 4 B (1) — v (1~ B (1~ Aoy
zﬁnk (1+6nk(1_r)) ) % %
T B ) (L Sy (1= 1)) — Y (L B LA ¢ )X T e =)
ZYleénk k) % X
T B0 4 8m (1 1)) —yon (1 = B ) (A A 0 ) X7 I =)
_ . (]— + Bnk(l _T)) (]— + 6nk(1 _T)) _Ynk(]. - 6nk)(1 - Ank)
(]— + Bnk(l _T)) (]— + 6nk(1 _T)) _Ynk(]. - 6nk)(1 - Ank)
__(1_'Ynk_[5nk(1_r)) (1+6nk(1_r))_Ynk (Ténk+(1_6nk)7\nk) HX _X*Hz
(]— + Bnk(l _T)) (]— + 6nk(1 —T)) _’Yﬂ.k(]- - 6nk)(1 - )\T‘-k) e
zﬁnk (1+6nk(1_r)) ) % %
T B ) (L Sy (1= 1)) — Yo (L B LA ¢ X7 T ey =)
ZYleénk k) % X
T B 1) (1 (1 1)) — Y (L B ) (1~ Ay ) X7 T U =)0
where
o — (14+Bny (1—7)) (148n, (1—7) ) =y, (1=8n, ) (1—An, ) —(1=Vn, —Bny (1=7) ) (1480, (1—7) ) —vn, (T8n, +(1—8n, )An, )
e (14+Bny (1=7)) (148n, (1—=7) ) =y ny (1=8n, ) (1-An, )

2By (1=7) (148n, (1-7) ) +2yn; ny (1-7)
(14+Bny (1=7)) (148m, (1=7) ) —yn, (1=8n; ) (1=An, )
2(1—otn, —yny ) (1=7) (14+8m, (1-7) )42y, 5y (1-T) € (0,1)
(4B (1=1)) (148n, (1—7) )=y ny (1—=8n, ) (1=An, ) ’
and

;L 2By (148n, (1-7)) - ok
O = B T (1 om, () 7wy Am Ty ) = X7 T Oy =)

2Yny Ony *) % ¥
+ (1+[3nk(171‘])(1+5nk(1*T))*Ynk(1*5nk)(1*7\nk) <f(x ) X /](ynk X )>.
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/

Now, from the condition (iv), (3.7), (3.6) and Lemma 2.4, we have Z oc{lk = oo and lim sup 'llk < 0. Then

o

k=0 k—o0 My
we get [|[xn, —x*|| — 0 as k — oco. This is a contradiction, hence the sequence {xn,} converges strongly to
x* € F(8). The proof is complete. O

Corollary 3.2. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and § = {T(t) : t > O} be a nonexpansive semigroup
from C into itself such that F(8) # 0. Let {xn,} be the sequences defined by x; € C and

Xn + Xn41
Iy = ———,
2 3.8)
Un = Onflxn) +(1—0n)zn, ( ’

Xn41 = GnXn + Brnf(xn) +¥nT(Un)yn,
where {otn }, {Bn ), {yn) and {dn} are the sequences in (0,1). The following conditions are satisfied:
(i) tn +Pn+vn=1

(i) lim B = lim 6, = lim p, = lim |&,41— an| =0and
n—oo n—oo n—oo n—oo

lim sup ||T(ni1)x — T(pn)x|| =0, C bounded subset of C;
= XGC
(iii) 0 < liminf &,y <limsup o, < 1;
n—oo

n—oo

(iv) Z B =ooforallmn > 1.
n=0

Then {xn } converges strongly to x* € F(8) which also solves the following variational inequality:

(I—1)x",J(z—x")) <0,Vz € F(8). (3.9)

1
Proof. Putting A, = 5 in Theorem 3.1, we can conclude the desired conclusion easily. This completes the

proof. O

4. Applications
(I) Application to the other forms of semigroups.

Theorem 4.1. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and § = {T(t) : t > O} be a nonexpansive semigroup
from C into itself such that F(8) # 0. Let {xn} be the sequences defined by x; € C and

Zn = 7\an + (1 - An)xn+1/
Yn = dnf(xn) +(1—0n)zn,

1 ([t
Xn41 = &nXn + Bnf(xn) +Ynt_ J T(t)yndt,

n JO

(4.1)

where {otn }, {Bn ), {¥nl 10n) and (A} are the sequences in (0,1), {t,} is an increasing sequence in (0, co) such that

t . - .
lim t, = coand lim —— = 1. The following conditions are satisfied:
n—oo n—oo n+1

(i) tn+Pn+vn=1

(i) lim B, = lim 8, = lim p, = lim |01 —n| = Iim A1 —An| =0and
n—oo n—oo n—oo n—oo n—oo

1 thyt 1 tn
— J T(t)xds — — J T(t)xds
n+1 Jo tn Jo

lim sup =0, C bounded subset of C;

n—oo XGC
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(iii) 0 < liminf &y, < limsup an, < 1;
n—oo n—oo

(iv) Z B =00 forallmn > 1.

n=0

Then {xn } converges strongly to x* € F(8) which also solves the following variational inequality:

(I—f)x", T(z—x*)) < 0,Vz € F(8). (4.2)

1 (™

Proof. Define pun (f) = o J f(t)dt,vn =0,1,2,... where f belong to the space of all real valued bounded
n Jo

continuous functions on positive real number with supremum norm. Then, {u,} is a regular sequence

1

of means [18]. Further, we have T(u,)x = o J T(t)xdt,Vx € C and apply theorem 3.1 to conclude the
n Jo

result. O

Corollary 4.2. Let C be a nonempty closed convex subset of uniformly convex and uniformly smooth Banach space
E. Let f be a generalized contraction mapping from C into itself and § = {T(t) : t > O} be a nonexpansive semigroup
from C into itself such that F(8) # 0. Let {xn,} be the sequences defined by x; € C and

2 = Xn + an,
Un = Onf(xn) + (1 —0n)zn, . (4.3)
X1 = £ Buflxn) +¥np- | " T(thundt
where {otn }, {Bn ), {¥nl, 10n) and (A} are the sequences in (0,1), {tn} is an increasing sequence in (0, co) such that
lim t, =ocoand lim tn 1. The following conditions are satisfied:
n—eo n—o tngl

(i) tn +Pn+vn=1

(i) lim B = lim 6, = lim p, = lim |61 —n| = lim A1 —An| =0and
n—oo n—oo n—oo n—oo n—oo

1 thi1 1 [t -
lim sup —J T(t)xds — — J T(t)xds|| =0, C bounded subset of C;
n—oo celltnt1 Jo ta Jo
(ii)) 0 < liminf &y, < limsup an, < 1;
n—00 n—oo
(iv) Z Bn =00 foralln > 1.
n=0

Then {xn } converges strongly to x* € F(8) which also solves the following variational inequality:
(I—1)x*,J(z—x")) <0,Vz € F(8). (4.4)

(IT) Application to Hilbert spaces.
From the duality mapping ] : E — 2F, if E = H is a real Hilbert space then ] = I is the identity mapping.
A

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let f be a generalized contraction
mapping from C into itself and § = {T(t) : t > 0} be a nonexpansive semigroup from C into itself such that
F(8) # 0. Let {xn} be the sequences defined by x; € C and

Zn = AnXn + (1 = An)Xny1,
Yn = Onflxn) + (1 —0n)zn, (4.5)
Xntl = GnXn + an(xn) +VnT(Hn)Un/

where {otn }, {Pn ), {¥n), {0n) and {An} are the sequences in (0,1). The following conditions are satisfied:
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(i) dn+Pnt+yvn=1
(i) lim B, = lim 6, = lim p, = lim |61 —an|= lim A1 —An| =0and
n—oo n—oo n—oo n_—>05) n—oo
lim sup || T(pnt1)x — T(pun)x|| =0, C bounded subset of C;
N e
(ii)) 0 < liminf &y, < limsup an, < 1;
n—00 n—oo

(iv) Z Pn =oo foralln > 1.
n=0

Then {xn } converges strongly to x* € F(§) which also solves the following variational inequality:
(I—F)x",z—x") <0,Vz € F(8). (4.6)

Corollary 4.4. Let C be a nonempty closed convex subset of a Hilbert space H. Let f be a generalized contraction
mapping from C into itself and § = {T(t) : t > 0} be a nonexpansive semigroup from C into itself such that
F(8) # 0. Let {xn} be the sequences defined by x; € C and

Xn + Xn41
In = ——F—,

2
Yn = Onf(xn) +(1—08n)zn, (4.7)
Xn+1 = &nXn + Brf(xn) +¥nT(Hn)YUn,
where {otn }, {Pn ), {yn) and {dn} are the sequences in (0,1). The following conditions are satisfied:

(i) dn+Pnt+yvn=1
(i) lim Bn = lim 6, = lim w, = lim |&n;1— an| =0and
n—oo n—oo n—oo T\.—>O£)
lim sup ||T(pn41)x — T(pn)x|| =0, C bounded subset of C;
n—>ooxe(~:

(ii)) 0 < liminf &,y <limsup &, < 1;
n—oo n—oo

(iv) Z B =00 forallm > 1.

n=0

Then {xn } converges strongly to x* € F(8) which also solves the following variational inequality:

(I—f)x*,z—x") <0,Vz € F(8). (4.8)

5. Numerical Example

Example 5.1. Let E = R® and an inner product (-,-) : R® x R® — R be defined by

xy)=x-y=x -yl +x* y? +3 ¥, vx = (x1, %%, x%), y = (v, v* )

and the usual norm || - || : R® — R be defined by

Il = /()2 + (2)2 + (632,

1 1 1 n—2
Let C = {XG IR?)‘”XH < 1}/ Xn = 7\n — %/ Bn — %1 6n = Hn = E/ Yn = nn and X1 = (1/2/3)
for all n = 1,2,... which satisfy the conditions (I) — (IV) in Theorem 3.1. We define the mappings

T(t),f: R® — R as follows: (T(t))(x) =xe ' and f(x) = % for all x € R®. Then the sequence

30n3 +33n2 4 (20n3 — 14n? — 26n +20)e /™
90n3 — (40n3 — 100n2 4 80n —20)e~1/n

Xn+1 = Xn

converges strongly to 0 = (0,0,0) shown in Figure 1 and Table 1.
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Sequene value

214 161820

Iteration step (n)

Figure 1: The iteration process.

Table 1: The value of sequence {xn }

n x4 X3, x5, n x4 X3 x5,

1 1 2 3 10 | 0.042547 | 0.085093 | 0.127640

2 0.7 1.4 21 50 | 0.000722 | 0.001445 | 0.002167

3 | 0.425637 | 0.851275 | 1.276912 | 100 | 0.000109 | 0.000218 | 0.000327

4 | 0.270485 | 0.540970 | 0.811455 | 400 | 0.0000023 | 0.0000046 | 0.0000069

5| 0.181409 | 0.362819 | 0.544228 | 797 | 0.0000003 | 0.0000006 | 0.00000099
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