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Abstract 
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  Among snail species acting as hosts for parasites, three taxa of Bithynia are 

responsible for transmission of the carcinogenic liver fluke Opisthorchis viverrini to 

humans in Thailand. Due to overlapping areas of geographic distribution of the snails 

and flooding event in 2011, occurrence of hybrid snails is now considered. To 

indicate a risk of increasing prevalence of O. viverrini infection and introducing O. 

viverrini into new areas, this study aimed to 1) investigate the hybridism between 

snails of genus Bithynia and 2) to verify the susceptibility of the snails to O. viverrini 

infection. In order to investigate the snail hybridisms, Bithynia snails were sampling 

from different parts of Thailand especially border area between the regions of 

Thailand including central-northeastern area. In addition, susceptibility to O. viverrini 

infection among Bithynia taxa was investigated throughout time course of 1, 7, 14, 28 

and 56 day post infection (dpi). Based on field survey, there was no occurrence of 

Bithynia snail hybridisms found in Thailand. The susceptibility to O. viverrini infection 

in both B. siamensis siamensis and B. funiculata was high at early period of infection 

(1 and 7 day dpi) thereafter dramatically declined at extra period of dpi. Interestingly, 

at 56 dpi, the susceptibility to O. viverrini infection in B. funiculata (25%) was shown 

higher than in B. siamensis siamensis where the infection was not observed. In 

conclusion, there was no occurrence of hybridism in Bithynia snail taxa in Thailand. 

However, this is solely based on field survey study. The experimental study should 

be further investigated in order to find an evidence of hybridism in Bithynia snails. 

However, the surveillance of O. viverrini infection in snail hosts should not be ignored 

as the high susceptibility to O. viverrini infection in B. funiculata was observed.     



Keywords: Opisthorchis viverrini, Bithynia, hybridism, susceptibility, 

choloangiocarcinoma 
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CHAPTER I 

INTRODUCTION 

1. Introduction to the research problem and its significance 

   Floods are the most common natural disasters in both developed and 

developing countries (Ohl, Tapsell, 2000; Coker et al., 2011). The severe flood in 

Thailand occurred in 2011 devastated the large part of Thailand. In total, 65 of 77 

provinces of Thailand were impacted particularly in the north, northeast and central 

Thailand. The flood resulted in 815 deaths and millions of residents were either left 

homeless or displaced (Ngaosuwankul et al., 2013). Floods are associated with many 

outbreaks of infectious diseases especially water-borne diseases such as typhoid fever, 

hepatitis, cholera and diarrheal diseases (Kondo et al., 2002; Harris et al., 2008; Carrel et 

al., 2010). The pattern of prevalence of not only water-borne diseases but also vector-

borne diseases appears to have changed after the floods (Cardenas et al., 2011; Harrison 

et al., 2009). Snail-borne infections, is one of the vector-borne diseases, have not been 

studied yet although fresh water snails serve as hosts/intermediate hosts for numerous 

species of parasites. Among snail species acting as hosts for parasites, Bithynia species 

are responsible for transmission of the carcinogenic liver fluke Opisthorchis viverrini to 

humans. More than 10 million people worldwide are infected by O. viverrini, which is 

classified as a group 1 carcinogen (IARC 1994, 2011).   

   In Thailand, three taxa of Bithynia have been reported as natural first 

intermediate host of O. viverrini in different geographical habitats; Bithynia funiculata in 

the north, B. siamensis siamensis in the central and the north and B. siamensis 
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goniomphalos in the northeast region (Wykoff et al., 1965; Brandt, 1974). The life cycle 

of the parasite requires contamination of a water body with feces containing parasite 

eggs of an infected definitive host. The snails become infected by ingesting the fully 

developed eggs. Miracidia hatch from the ingested eggs and then penetrate snail tissue 

to develop into sporocysts. Asexually reproduction and development generate large 

numbers of rediae and cercariae the latter of which are released from the snail host. 

The released cercariae become metacercariae in fish and adult stage in fish-eating 

mammals, respectively. Seasonal variation was influenced by environmental conditions, 

especially duration and quantity of rainfall, played important roles in a complex 

interplay between host and parasite (Brockelman et al., 1986). Additionally, the 

population dynamics of Bithynia snails fluctuated according to rainfall, with O. viverrini 

infection occurring almost throughout the year (Upatham, Sukhapanth, 1980). The 

natural infection rates of O. viverrini in Bithynia snails were varied from 0.083 to 3.04% 

(Wykoff et al., 1965; Upatham, Sukhapanth, 1980; Brockelman et al., 1986; Sri-aroon et 

al., 2005; Kiatsopit et al., 2012; Prasopdee et al., 2013). In laboratory infection, B. 

funiculata and B. siamensis siamensis were 4-7 times more susceptible to O. viverrini 

than B. siamensis goniomphalos (Chanawong, Waikagul, 1991).  

   Species identification of Bithynia is basically based on anatomical and 

morphological characteristics together with geographic distribution (Wykoff et al., 1965; 

Brandt, 1974). However, the geographic distribution alone was often used for 

identification of closely related species of the snails (Kulsantiwong et al., 2013). Due to 

overlapping of geographic distribution areas of the Bithynia snails and furthermore the 
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flooding event in 2011, possibility of hybridization of them and occurrence of hybrid 

snails is now considered. Particularly, hybrids between high susceptible species of B. 

siamensis siamensis and B. funiculata will be focused. Previously, hybridism between 

snail species was proved that can be occurred naturally and experimentally (Chi et al., 

1971; Yousif et al., 1998; Facon et al., 2005; Teodoro et al., 2011). Moreover, 

susceptibility of hybrids to parasite infections can be considered potential hosts of 

parasites (Chi et al., 1971; Teodoro et al., 2011). This project aims to investigate the 

hybridism between snails of genus Bithynia and to verify the susceptibility of hybrids to 

O. viverrini infection. Moreover, infectivity of O. viverrini infection to parents and hybrids 

is also compared. The project will result in a fundamental aspect of the biology of snails 

acting as intermediate hosts of a medically important parasite. The data generated from 

this project will be of great benefit for parasitologist and malacologist to indicate a risk 

of increasing prevalence of O. viverrini infection and introducing O. viverrini into new 

areas. 

  

2.   Objectives 

2.1  To investigate the hybridism between B. siamensis siamensis, B. siamensis 

goniomphalos and B. funiculata 

 2.2  To verify susceptibility of Bithynia snails to O. viverrini infection 
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3. Research plan  
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1.  
Occurrence of 
Bithynia snail 
hybridisms 

- Field survey and 
sampling of hybrid snails 
- Cercarial shedding and 
snail dissection 
- DNA extraction and 
species specific primers 
PCR 
- Producing a laboratory 
hybrid snails 
- Data analysis 

                        

2. 
Susceptibility 
of Bithynia 
snails to O. 
viverrini 
infection 

- Preparation of Bithynia 
snails 
- Preparation of O. 
viverrini eggs 
- Testing of susceptibility 
- Data analysis 
- Preparation of 
manuscripts 

                        

3.  
Data analysis 
and 
Preparation of 
full report 
and 
manuscripts 

- Data analysis and 
preparation of full report 
and manuscripts  
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4. Expected benefits 

 4.1 Providing, for the first time, a hybridism of Bithynia snails in Thailand. 

  4.2 Providing a great benefit for parasitologist and malacologist to indicate a risk 

of increasing prevalence of Bithynia-borne O. viverrini infection.  
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CHAPTER II 

LITERATURE REVIEWS 

5.1     Morphology, life cycle and epidemiology of O. viverrini 

  The adult O. viverrini parasite is monoecious, elongated, dorso-ventrally 

flattened and lancet-shaped with an average body size of 7.0 × 1.5 mm. The oral sucker 

is situated subterminal end, while the ventral sucker is on the ventral side at 

approximately one-fourth of the body length from the anterior end. The deeply lobed 

testes situated diagonally, located near the posterior extremity. The multilobulated 

ovary is situated in front of the anterior testis. The long, tightly packed coiled and eggs 

filled uterus is located between ventral sucker and ovary. The genital orifice is opened 

directly in front of the ventral sucker. The digestive tract comprises of the muscular 

pharynx behind the oral sucker and a short esophagus followed by bifurcated intestinal 

ceca which run nearly to the posterior end. The vitellaria posed in the lateral fields 

between ventral sucker and testes and consist of numerous follicles organized as 

several columns. The long excretory bladder runs S-shaped between the two testes 

(Sadun, 1955).  

   The adult stage of O. viverrini resides in the secondary bile ducts and may be 

found in common bile duct, cystic duct and gall bladder in case of heavy infection. 

Embryonated eggs are laid from mature adult worms into the biliary system and 

excreted with the feces. Bithynia snails may find and ingest the parasite eggs if the 

contaminated feces pollute natural water reservoirs and miracidia will hatch from the 

ingested embryonated eggs in the snail digestive tract. The hatched miracidia penetrate 
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through the snail tissue and develop into sporocysts. The sporocysts asexually 

reproduce and develop to rediae which then produce cercariae. Free swimming 

cercariae are released from infected snails passing with expiration water from the mantle 

cavity. The cercariae attach to and penetrate the flesh of the second intermediate host, 

cyprinid fish (about 18 species are susceptible), they shed their tails and encyst to 

become metacercariae (Harinasuta C, Harinasuta T, 1984; WHO, 1995; Waikagul, 1998). 

The Metacercaria is an infective stage to humans and other fish-eating mammals such as 

cats and dogs. 

         Opisthorchiasis due to O. viverrini infection is mainly endemic to South East Asia. 

The number of infected people was approximately 10 million of people (WHO, 1995; 

Jongsuksuntigul, Imsomboon, 2003). In Thailand, the high endemic country for O. 

viverrini infection, it was estimated that 6 million people were infected (Jongsuksunsigul, 

Imsomboon, 2003). It was estimated that 1.7 million people in Laos were infected with 

O. viverrini (WHO, 1995). Moreover, Cambodia and the southern region of Vietnam have 

also been reported to be endemic for O. viverrini (Lee et al., 2002; De et al., 2003). 

 

5.2  Correlation of opisthorchiasis and cholangiocarcinoma 

  The majority of persons infected with O. viverrini are symptomless. Nevertheless, 

a number of hepatobiliary diseases, including cholangitis, obstructive jaundice, 

hepatomegaly, periportal fibrosis, cholecystitis and cholelithiasis were associated with 

heavy and chronic infection (Harinasuta C, Harinasuta T, 1984; Osman et al., 1998; 

Mairiang E, Mairiang P, 2003; Sripa et al., 2005, 2007). Moreover, the infection was found 
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to be a significant risk factor for development of cholangiocarcinoma (CCA) in humans 

(Haswell-Elkins et al., 1992) and was classified into carcinogenic group 1 (IARC, 1994, 

2011). Chronic inflammation as a result of chronic infection is accepted to be involved in 

carcinogenesis of CCA (Holzinger et al., 1999; Sirica, 2005; Kawanishi, Hiraku, 2006). The 

occurrence of CCA in Thailand had a strongly positive correlation with the prevalence of 

O. viverrini infection (Srivatanakul et al., 1991; Sriamporn et al., 2004). The incidence of 

CCA in Udornthani and Khon Kaen Provinces, northeast Thailand is the highest in the 

world (Vatanasapt et al., 1990; Parkin et al., 2002; Sriamporn et al., 2004; Khuhaprema, 

Srivatanakul, 2007), where favorite dishes of raw, fermented or undercooked cyprinid fish 

are the sources of infection. 

 

 

5.3  Classification, ecology and geographic distribution of Bithynia snails in 

Thailand 

    Bithynia snails are classified in phylum Molluska, class Gastropoda, subclass 

Prosobranchia, order Mesogastropoda, family Bithyniidae and genus Bithynia.   In 

Thailand, three taxa of Bithynia have been reported as natural first intermediate hosts 

for O. viverrini are B. siamensis goniomphalos, B. siamensis siamnesis and B. funiculata. 

The B. siamensis goniomphalos were found in northeast Thailand (Brandt, 1974). It lives 

in various habitats ranging from shallow, mud, rocks, temporary pond and mashed to 

permanent reservoirs, rice paddy field and the edge of water reservoirs with the depth 

of water less than 30 cm (Papasarathorn et al., 1980; Brockelman et al., 1986; 
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Chitramvong, 1992), some of them were found at depths up to 3 m (Suwannatrai et al., 

2011). The B. siamensis siamensis were found in artificial ponds and preferred to attach 

to artificial pond plants such as grasses, weeds, sticks and the beneath of lotus leaves. 

The snails populations were larger recovered on a substrate in the level of water surface 

than on the mud bottom of the pond (Chitramvong, 1992; Upatham, Sukhapanth, 1980). 

The B. funiculata were widely spread in a rice field especially on a mud substrate in the 

north of Thailand (Brandt, 1974; Kulsantiwong et al., 2013). The sexes of snails can be 

distinguished by the presence of a penis or verge on the right side of the neck of the 

males (Kruatrachue et al., 1982). 

 

5.4  Species identification of Bithynia snails in Thailand    

   Species of Bithynia snails is practically identified based on shell morphology. The 

Bithynia snail is different from other genera with the presence of a more or less strong 

carina around the umbilicus and an angled base of the peristome. B. siamensis 

goniomphalos differs from B. funiculata by a narrower umbilicus with a much weaker 

carina and slender shape. The shell is dull, normally reddish-brown colored and a 

subovated conic. The whorls are a little rounded with horizontal and indented sutures. 

The surface sculpture consists of thick transverse raised lines and fine spiral incised lines. 

The apex of the shell is eroded when old, relatively wide and deep. The outer part of 

last whorl is quite straight. The basal lip of aperture is appeared sharply angled on the 

left side. The average shell size has been reported at 10.54 and 6.48 mm of length and 

width, respectively. In the past, it was often identified as B. siamensis siamensis, which is 
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distributed in central Thailand. Later the snails were identified as a single species but 

with the subspecies B. siamensis goniomphalos and B. siamensis siamensis (Brandt, 

1974). Recently, molecular based identification was introduced by Kulsantiwong et al. 

(2013) who distinguished three taxa of Bithynia snails by specific primers designed from 

RAPD.  

   

5.5  Genetic variation of Bithynia snails  

   Shell morphology is currently used to identify species of Bithynia snails. Genetic 

variation among Bithynia snails has been investigated by various molecular methods. 

Previous work revealed only EST was different within the two subspecies of B. siamensis 

whereas four enzymes (LDH, PGM, GPI and EST) differed between B. funiculata and B. 

siamensis, (Viyanant et al., 1985). Random amplified polymorphic DNA polymerase chain 

reaction (RAPD) based on two primers has also shown that different genotypes of snails 

in family Bithyniidae in Thailand may be correlated to specific wetlands (Duangprompo, 

2007). Recently, multilocus enzyme electrophoresis (MEE) was used to investigate the 

systematics and population genetics of the different species and subspecies of Bithynia 

snails in Thailand, revealed fixed genetic differences at 67-73% of these taxa. The fixed 

genetic differences at 73% were found between the species B. funiculata and B. 

siamensis whereas 67% fixed genetic differences were detected between subspecies B. 

s. siamensis and B. s. goniomphalos (Kiatsopit et al., 2011). Furthermore, MME results 

demonstrated correlations between genetic clusters of O. viverrini and B. s. 
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goniomphalos in different wetlands which suggesting possible co-evolution (Saijuntha et 

al., 2007).  

  

5.6  O. viverrini infection in snail hosts 

  The overall of natural infection rates of O. viverrini in Bithynia snails varied from 

0.083 to 1.6% (Wykoff et al., 1965; Upatham, Sukhapanth, 1980; Brockelman et al., 1986). 

Prasopdee et al. (2013) reported the prevalence of O. viverrini infection in B. siamensis 

goniomphalos that was 0.45% which is in an agreement with Sri-aroon et al. (2005) who 

reported that the natural infection rate varied from 0.61 to 1.3%. Nevertheless, Kiatsopit 

et al. (2012) showed a higher prevalence of infection than any report with an averaged 

3.04% and a hot spot of 6.93% in Sakon Nakhon Province. In laboratory infection, B. 

funiculata and B. siamensis siamensis were 4-7 times more susceptible to O. viverrini 

than the most medically important B. siamensis goniomphalos which is widely 

distributed in the endemic areas for opisthorchiasis. In experimental trials, the highest 

infection rate was obtained with an optimum dose of 50 fully developed O. viverrini 

eggs per snail. The increment number of eggs ingested was proportional to the mortality 

rate of the infected snails (Chanawong, Waikagul, 1991). In the same endemic area of 

opisthorchiasis, the prevalence of O. viverrini infection was high in humans and fish 

intermediate hosts up to 90% and 97%, respectively compared to a low infection rate of 

0.11% in the snail intermediate host (Vichasri et al., 1982; Upatham et al., 1984; 

Brockelman et al., 1986).  
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5.7  Hybridism of parasite-harboring snails 

   The possibility of hybrids between species of parasite-harboring snails has been 

studied (Chi et al., 1971; Yousif et al., 1998; Facon et al., 2005; Lotfy et al., 2005; 

Teodoro et al., 2011). Experimentally, hybridism between Biomphalaria cousini and B. 

amazonica has shown that is possible and hybrids of them were susceptible to 

Schistosoma mansoni infection (Teodoro et al., 2011). In addition, laboratory hybrids of 

four subspecies of Oncomelania hupensis served as intermediate hosts of both human 

and zoophilic strains of S. japonicum, while parents O. hupensis hupensis and O. 

hupensis formosana was susceptible to only human and zoophilic strains, respectively 

(Chi et al., 1971). Natural survey in Egypt also showed that a hybrid of B. glabrata and B. 

alexandrina has invaded irrigation and drainage systems in Nile Valley and found 

naturally infected with S. mansoni thus indicating that it is already participating in 

transmission of S. mansoni in Egypt (Yousif et al., 1998). 

 

5.8  Detection of trematodes infection in snail hosts 

  The detection of trematode infected snails by exposure of snails to artificial light 

and observation of cercarial shedding is commonly used (Upatham, Sukhapanth, 1980; 

Adam et al., 1993). Alternatively, snails are crushed between glass slides and examined 

for the presence of intramolluscan stages of trematodes. Low parasite burden, death of 

snails prior to crushing and pre-patent infections are the limitations of this technique 

(Barbosa, 1992; Hanelt et al., 1997). These conventional techniques are usually 

performed for identification of infected snails because of ease and low material costs, 
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but time consuming and personal experience are necessary. In 1985, the amplification of 

target DNA sequences via in vitro replication by PCR was first described (Saiki et al., 

1985). Presently, molecular techniques have been extensively used as diagnosis tools. In 

the past, pre-patent S. mansoni infection in snails was approached by a PCR assay based 

on a highly repeated tandemly arranged DNA sequence (Hamburger et al., 1998). 

Recently, a PCR method was used to detect Fasciola gigantica infection in snail 

intermediate host, Lymnaea auricularia with high sensitivity and specificity (Velusamy et 

al., 2004). In another study, a PCR assay was developed for detection of Clonorchis 

sinensis infected snails (Muller et al., 2007). A multiplex PCR targeting the internal 

transcribed spacer (ITS) region of rDNA was alternatively used for identification of 

infected L. columella by F. hepatica (Magalhaes et al., 2004). In addition, a nested PCR 

amplifying the 18S rDNA of S. mansoni was also developed for detection of infection in 

snails (Hanelt et al., 1997). Particularly, detection of intramolluscan O. viverrini using 

specific primers PCR was used for examination of infection status (Prasopdee et al., 

2013). 
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CHAPTER III 

MATERIALS AND METHODS 

6.   Occurrence of Bithynia snail hybridism: 

6.1   Field survey and sampling of hybrid snails 

   Adult snails in genus Bithynia were collected with wire-mesh scoop or by 

hand from three regions of Thailand (north, northeast and central) based on the 

information of previous reports (Brandt, 1974; Kiatsopit et al., 2011; Kulsantiwong et 

al., 2013). Based on geographic distribution of snail species, the overlapping area 

especially region borders were surveyed for occurrence of hybrid snails. Each 

sampling site was recorded and its GPS coordinates was determined. Each sampled 

locality, the snails were randomly selected for species identification using available 

protocols based on shell morphology (Brandt, 1974; Upatham et al., 1983; 

Chitramvong, 1992), and molecular identity (Duangprompo, 2007; Kulsantiwong, 2013; 

Kulsantiwong et al., 2013).  

 

6.2  Cercarial shedding and snail dissection 

  The snail samples were examined the trematode infection based on cercarial 

shedding method. Prior to the cercarial shedding, the snails were cleaned with de-

chlorinated tap water several times. The snails were placed individually into plastic 

container filled with 5 ml de-chlorinated tap water. Releasing of cercaria was induced 

by exposing the snails to 8 W electric light for at least 2 hours following with covering 

the snails with black plastic sheet for overnight. After the cercarial induction, the 

water of each snail was examined for cercariae under stereomicroscope. Uninfected 
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snails were dissected to remove soft body from their shell. The snail’s soft bodies 

were stored in -20 °C  until DNA extraction. 

 

6.3  DNA extraction and species specific primers PCR 

  DNA extraction of the snails followed the protocol described by Prasopdee et 

al (2015). Briefly, The soft bodies were homogenized in CTAB buffer (2% w/v CTAB, 

1.4 M NaCl, 0.2% v/v beta-mercaptoethanol, 20 mM EDTA, 100 mM Tris–HCl, pH 8 

.0,0.2 mg/ml proteinase K) (Winnepenninckx et al.,1993), and then incubated at 55 °C 

for 6 hours. Snail homogenate proteins were precipitated with phenol/chloroform, 

centrifuged at 12,000 × g for 10min at 4 ◦C. Protein was doubly precipitated with 

phenol/chloroform/isoamyl alcohol, centrifuged at 12,000 × g for 10 min at 4 ◦C, and 

DNA precipitated with isopropanol then washed twice with 70 % ethanol followed by 

absolute ethanol. The DNA pellet was air-dried, re-dissolved with TE buffer (10 mM 

Tris, 1 mM EDTA, pH 8.0), diluted to 10 ng/ul and used as template for PCR. 

  Species specific primers PCR for molecular identity of B. siamensis siamensis, 

B. siamensis goniomphalos and B. funiculata followed protocol described by 

Kulsantiwong (2013). Briefly, designed species specific primer sets for B. funiculata 

was forward primer (BF2F) 5’-GGG ATG CTC GAT TGA AAG TG-3’ and reverse primer 

(BF2R) 5’-GAC CTT CCG TGA AAG TCC TG-3’, for B. siamensis siamensis was forward 

primer (BS1F) 5’-GCG AAG GAC AGA CCT GGA T-3’ and reverse primer (BS1R) 5’-GGG 

GAC TCA CAG CAT AAT GG-3’, and for B. siamensis goniomphalos was forward primer 

(BG1F) 5’-GGC TCA ATG ACA GAC ATT CG-3’ and reverse primer (BG1R) CGG GGG AAG 

GAA TTG ATC AG-3’. Each PCR was carried out with total volume of 25 ul containing 

1 Ready-To-Go bead, 1 ul of 10 ng DNA template and 19 ul of distilled water. Themal 
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cycle was programmed by 45 cycles of 95 ◦C for 1 min, 62 ◦C for1 min, 72 ◦C for 2 

min, and a final extension at 72 ◦C for 5 min. The PCR products were separated by 

1.5% TBE agarose gel electrophoresis. Specific amplicons of 314 bp, 516 bp and 502 

bp were revealed to identify B. siamensis siamensis, B. siamensis goniomphalos and 

B. funiculata, respectively.    

 

6.4  Producing of laboratory hybrid snails 

  Parent snails, male and female were prepared by observing presence of the 

verge for male and absence of the verge for female. The parent species were chosen 

from the collected sites which already approved the species based on both shell 

morphology and specific primers PCR (as shown in Table 3). The snails were allowed 

to breed freely in 15 x 20 cm glass containers with the ratio of 5 female and 5 male 

per container. First offspring were observed every day.        

 

7.  Susceptibility of Bithynia snails to O. viverrini infection: 

7.1   Preparation of Bithynia snails 

   Each sampling site was recorded and its GPS coordinates was determined. 

The snails were sorted and identified based on shell morphology following available 

protocols (Brandt, 1974; Upatham et al., 1983; Chitramvong, 1992). In addition, two 

subspecies (B. siamensis siamensis and B. siamensis goniomphalos) were categorized 

by geographic distribution. Each species of Bithynia snails was randomly selected and 

confirmed using specific primers (Duangprompo, 2007; Kulsantiwong, 2013; 

Kulsantiwong et al., 2013).  
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7.2   Preparation of O. viverrini eggs 

  Golden syrian hamsters (Mesocricetus auratus) were experimentally infected 

with 50 O. viverrini metacercariae per hamster. The infected animals were euthanized 

6 weeks post infection. O. viverrini adults were obtained from biliary tracts and gall 

bladders of hamsters and then washed with 0.85% sodium chloride solution. Mature 

eggs were dissected from the distal portion of the uterus of adult flukes under a 

stereoscope (Khampoosa et al., 2012). The eggs were washed several times with 

distilled water and kept at room temperature for 2 weeks to undergo full maturation 

for further experimental infection (Chanawong, Waikagul, 1991). 

 

7.3   Testing of susceptibility 

   All snails were used for infection were full grown. These snails were placed 

individually in transparent plastic containers with 6 ml of de-chlorinated tap water 

and exposed to 50 embryonated O. viverrini eggs (Chanawong, Waikagul, 1991; 

Prasopdee et al., 2013). The snails were placed into plastic containers covered with 

porous lids and activated by exposure to electric light. Let the snails ingested 

parasite eggs freely under these conditions for 24 h. After that, the snails were 

washed and reared in 15 x 20 cm glass container, with no more than 50 snails in 

each container. These snails were raised at room temperature with a dark and light 

cycle as in natural conditions and fed on synthetic snail food (Sumethanurungkul, 

1970). The containers were checked daily for mortality and dead snails were 

removed and recorded. All exposed snails were checked weekly for shedding of 

cercariae for a total of 80 days (Teodoro et al., 2011). The first eight weeks post 

infections, the snails were randomly selected and pre-patent examined using specific 
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primers at 1, 7, 14, 28, and 56 day post infection. The snails that survive for 80 days 

without shedding of cercariae were examined for intramolluscan stages by crushing 

method.  

  DNA extraction and specific primer PCR was applied to examine susceptibility 

of snails to O. viverrini infection as described by Prasopdee et al (2015). Briefly, The 

soft bodies were homogenized in CTAB buffer (2% w/v CTAB, 1.4 M NaCl, 0.2% v/v 

beta-mercaptoethanol, 20 mM EDTA, 100 mM Tris–HCl, pH 8 .0,0.2 mg/ml proteinase 

K) (Winnepenninckx et al.,1993), and then incubated at 55 °C for 6 hours. Snail 

homogenate proteins were precipitated with phenol/chloroform, centrifuged at 

12,000 × g for 10min at 4 ◦C. Protein was doubly precipitated with 

phenol/chloroform/isoamyl alcohol, centrifuged at 12,000 × g for 10 min at 4 ◦C, and 

DNA precipitated with isopropanol then washed twice with 70 % ethanol followed by 

absolute ethanol. The DNA pellet was air-dried, re-dissolved with TE buffer (10 mM 

Tris, 1 mM EDTA, pH 8.0), diluted to 10 ng/ul and used as template for PCR. 

  The specific primers, OV-6F (5′-CTG AAT CTC TCG TTT GTT CA-3′ ) and OV-6R 

(5′ -GTT CCA GGT GAG TCT CTC TA-3′ ) (Wongratanacheewin et al., 2001) were used 

to amplify the pOV-A6 specific region of 330 bp. The PCR reaction was performed 

using a DNA Thermal cycler, performed in a final volume of 10 ul with 0.04 ul TaKaRa 

Ex Taq 250 U, 1 ul dNTP mixture, 1 ul 10x Ex Taq buffer, 3 ul DNA sample, 3 ul 

distilled water, and 5 pmol of each primer. The PCR carried out with cycling 

conditions of initial denaturation at 94 ◦ C for 5 min followed by 35 cycles of 1 min 

denaturation at 94 ◦ C, 1 min annealing at 55 ◦C, and 1 min extension at 72 ◦C, 

followed by a final extension for 7 min at 72 ◦ C. PCR products were analyzed by 

1.5% TBE agarose gel electrophoresis. 
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7.4   Statistical analysis 

   Infection rate of O. viverrini in natural field B. funiculata, B. siamensis goniomphalos 

and B. siamensis siamensis were reported as % prevalence of infection. The association 

between the laboratory O. viverrini infection (binary outcomes) of B. siamensis siamensis, 

and B. funiculata and day post infection (predictor) was gauged by crude odds ratios 

obtained from binary logistic regression analysis.  
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CHAPTER IV 

RESULTS 

8.1  Localities of snail samples and O. vivierrini infection 

  Bithynia snails were sampled at different parts of Thailand (see Table 1). B. 

siamensis siamensis were sampled from provinces in central and north parts of 

Thailand, B. siamensis goniomphalos were sampled from provinces in northeast part 

of Thailand, and B. funiculata were solely sampled from Chiang Mai province in 

northern Thailand. Sampling habitats of Bithynia spp. are not strictly to rice field 

even they can be found mostly. Puddle, dam and ditch were also included in the 

habitats of sample collection (Table 1 and Figure 1). Based on morphology, in each 

region, there was no report of Bithynia species found apart from described in 

previous studies (Brandt, 1974; Kiatsopit et al., 2011; Kulsantiwong et al., 2013).       
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Figure 1 Sampling habitats of Bithynia spp. in Thailand. 

(A, B) rice field, (C) pond, (D) ditch. 
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Table 1 Collection sites for Bithynia spp. from Thailand with GPS coordinates. 

Species Province District Habitat Latitude Longitude 
Central 

Bithynia siamensis 
siamensis (Morelet, 1866) 
 

Bangkok (BK) 
 

Kasetsat 
University 

Puddle 
13.85270023 
 

100.5699997 
 

 
Bangkok (BK) Chiang Rak Noi  Rice field 14.62575 100.341119 

 
Phra Nakhon Si 
Ayutthaya (AU) 

Bang Sai 
 
 

Rice field 
 

14.112994 
 
 

100.282822 
 
 

 
Suphan Buri (SP) Bang Pla Ma Rice field 14.242701 100.64638 

 
Suphan Buri (SP) Doembang Rice field 14.532525 100.52342 

 
Chai Nat (CN) Sapphaya Rice field 15.94546 100.143996 

 
Nakhon Sawan (NS) 
 

Nakhon Sawan 
 

Ditch 
15.431085 
 

100.104614 
 

 Chachoengsao (ChS) Ban Pho Dich 13.362 101.452 
 Chon Buri (CB) Phanat Nikom Rice field 13.51933 101.15396 
 Sara Buri (SB) Ban Mo Rice field 14.58466 100.74742 
 Sara Buri (SB) Phra Phutthabat Ditch 14.3626 100.4842 

Northeast 
Bithynia siamensis 
goniomphalos  
(Walker, 1927) 
 

Udon Thani (UD) 
 

Kut Chap 
 

Dam 
17.202962 
 

102.335197 
 

 
Udon Thani (UD) Nong Wu So Dam 17.211346 102355616 

 
Udon Thani (UD) Nong Han Ditch 17.151296 103.6974 

 
Udon Thani (UD) Udon Thani Ditch 17.211426 102.355546 

 Khon Kaen (KK) Khon Kaen 
Rice field/ 
Ditch 

16.447400 102.902918 

 Kalasin (KL) Yang Talat Dam 16.352191 103.24407 

 Kalasin (KL) Yang Talat Puddle 16.35459 103.243435 
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Table 1 Collection sites for Bithynia spp. from Thailand with GPS coordinates (Cont). 

Species Province District Habitat Latitude Longitude 
North 

Bithynis siamensis 
siamensis (Morelet, 1866) 
 

Chiang Mai (CM) San Kamphaeng Ditch 18.51104 99.24301 

 
Chiang Mai (CM) Hang Dong Ditch 18.404659 98.55740 

 
Chiang Mai (CM) Mae Rim Rice field 18.552205 98.573477 

 
Chiang Mai (CM) Saraphi Rice field 18.423527 99.14597 

Bithynia funiculata 
(Walker, 1927) 

Chiang Mai (CM) 
 

San Kamphaeng 
 

Ditch 
18.51104 
 

99.24301 
 

 
Chiang Mai (CM) 
 

Mae Rim 
 

Rice field 
18.552205 
 

98.573477 
 

 Chiang Mai (CM) San Sai Rice field 18.5246 99.318 
 

The infection of O. viverrini in Bithynia snails was solely observed in B. siamensis 

goniomphalos sampled from Khon Kaen Province. The prevalence of O. viverrini 

infection the snail was 1.55% (12/772) with a shell size of greater than 0.6 mm.  

 

8.2   Molecular species identification of Bithynia snails in Thailand 

  Specific primers PCR amplicons sized 314 bp, 516 bp and 502 bp were used 

to identify B. siamensis siamensis, B. siamensis goniomphalos and B. funiculata, 

respectively. The molecular based species identification was used along with shell 

morphology and sampling locations. There was no hybrids observed by showing the 

specific amplicons corresponding to morphologic based species identification and 

sampling locations (see Table 2).   
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Table 2 Presence of specific amplicons of Bithynia snails in Thailand. 

Species Province District Specific bands (bp) 
Central 

Bithynia siamensis 
siamensis (Morelet, 1866) 
 

Bangkok (BK) 
 

Kasetsat 
University 

314 

 
Bangkok (BK) Chiang Rak Noi  314 

 
Phra Nakhon Si 
Ayutthaya (AU) 

Bang Sai 
 
 

314 

 
Suphan Buri (SP) Bang Pla Ma 314 

 
Suphan Buri (SP) Doembang 314 

 
Chai Nat (CN) Sapphaya 314 

 
Nakhon Sawan (NS) 
 

Nakhon Sawan 
 

314 

 Chachoengsao (ChS) Ban Pho 314 
 Chon Buri (CB) Phanat Nikom 314 
 Sara Buri (SB) Ban Mo 314 
 Sara Buri (SB) Phra Phutthabat 314 

Northeast 
Bithynia siamensis 
goniomphalos  
(Walker, 1927) 
 

Udon Thani (UD) 
 

Kut Chap 
 

516 

 
Udon Thani (UD) Nong Wu So 516 

 
Udon Thani (UD) Nong Han 516 

 
Udon Thani (UD) Udon Thani 516 

 Khon Kaen (KK) Khon Kaen 516 

 Kalasin (KL) Yang Talat 516 

 Kalasin (KL) Yang Talat 516 
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Table 2 Presence of specific amplicons of Bithynia snails in Thailand (Cont). 

Species Province District Specific bands (bp) 
North 

Bithynis siamensis 
siamensis (Morelet, 1866) 
 

Chiang Mai (CM) San Kamphaeng 314 

 
Chiang Mai (CM) Hang Dong 314 

 
Chiang Mai (CM) Mae Rim 314 

 
Chiang Mai (CM) Saraphi 314 

Bithynia funiculata 
(Walker, 1927) 

Chiang Mai (CM) 
 

San Kamphaeng 
 

502 

 
Chiang Mai (CM) 
 

Mae Rim 
 

502 

 Chiang Mai (CM) San Sai 502 
 

 
 8.3   Laboratory production of hybrid Bithynia snails 

  Hybrid offspring was only produced from cross breeding between male B. 

siamensis siamensis and female B. siamensis goniomphalos (Table 3). Unfortunately, 

the laboratory produced hybrids were all dead after 2 weeks.  

 

Table 3 Occurrence of laboratory hybrids of Bithynia snails. 

Male Female Offspring 
BSG BF Not found 
BF BSG Not found 

BSG BSS Not found 
BSS BSG Found 
BSS BF Not found 
BF BSS Not found 

BSG: Bithynia siamensis goniomphalos; BSS: Bithynia siamensis siamensis; BF: Bithynia funiculata 

 
 
8.4  Susceptibility of Bithynia snails to O. viverrini infection 

   Susceptibility of Bithynia snails to O. viverrini infection were examined based 

on cercarial shedding and specific primers PCR by presenting of O. viverrini cercaria 

and 330 bp specific band of PCR product, respectively (Figure 2). Based on cercarial 
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shedding, there was no released O. viverrini cercariae were detected throughout time 

course of laboratory infection and there was no Bithynia snails survived until 80 dpi. 

However, based on molecular based-detection, O. viverrini infection was detected by 

revealing the specific band (Table 4). The odds ratio (OR) for association between 

susceptibility to O. viverrini infection of Bithynia snails and day post infection (dpi) 

are presented (see Table 5 and Table 6). There was evidence of an association 

between dpi and susceptibility to infection of B. siamensis siamensis that at least 

two groups differed (Twald=11.309, df=4, P=0.023). Relative to day 1 (as baseline), 

there was a decrease in odds of infection for 14 dpi (P = 0.03), where at 14 dpi was 

associated with a 3% decrease in the odds of infection (P = 0.003). At 7 dpi showed 

susceptibility to infection was similar to 1 dpi (P = 0.2). Interestingly, there was no 

infection detected at 28 and 56 dpi. There was evidence of an association between 

dpi and susceptibility to infection of B. funiculata that at least two groups differed 

(Twald=16.065, df=4, P=0.03). Relative to day 1 (as baseline), there was a decrease in 

odds of infection for 7, 28 and 56 dpi (P < 0.05). However, at 14 dpi was not showed 

statistical evidence of a decrease in odds of infection, there was no infection 

detected. There was evidence that at 7 and 56 dpi were associated with a 7.7% 

decrease in the odds of infection (P = 0.003). At 28 dpi, 1.5% decrease in the odds of 

infection was shown associated (P = 0.001).  
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Figure 2 Detections of O. viverrini infection in snails. 330 bp specific band of PCR 
product for O. viverrini; lane M = 100bp DNA ladder, lane 1 = Negative control, lane 

2-3 = positive to O. viverrini infection.   
 

Table 4 Percentage of susceptibility to O. viverrini infection of B. siamensis siamensis 
and B. funiculata categorized by post infection (dpi) 

% positive snails 
 
dpi 

B. siamensis siamensis 
(positive/total) 

B. funiculata 
(positive/total) 

1 94 (15/16) 82 (13/16) 
7 75 (12/16) 25 (4/16) 
14 32 (5/16) 0 (0/16) 
28 0 (0/16) 7 (1/16) 
56 0 (0/16) 25 (4/16) 

overall 40 (32/80) 28 (22/80) 
 

Table 5 Association between infection and day post infection of B. siamensis 
siamensisi 

Day post infection OR 95% CI 
1 (reference) Twald=11.309, df=4, P=0.023  
7 0.200 0.020-2.033 
14 0.030* 0.003-0.297 
28 0.000 - 
56 0.000 - 
* Indicate significance at P< 0.05, i Results of association are shown as odds ratio (OR). 
 
 
 
 
 
 

M           1           2           3            

330 bp - 
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Table 6 Association between infection and day post infection of B. funiculatai 

Day post infection OR 95% CI 
1 (reference) Twald=16.065, df=4, P=0.03  
7 0.077* 0.014-0.417 
14 0.000 - 
28 0.015* 0.001-0.167 
56 0.077* 0.014-0.417 
* Indicate significance at P< 0.05, i Results of association are shown as odds ratio (OR). 
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CHAPTER V 

DISCUSSIONS AND CONCLUSIONS 

  Among three taxa of Bithynia snails, laboratory hybrid offspring can only be 

produced from male B. siamensis siamensis and female B. siamensis goniomphalos. 

It is possible that these snails are very closely in morphology and genetic as 

classified as the same species unlike B. funiculata. This may suggest possibility of 

occurrence the natural hybrid Bithynia snails especially in central, north and 

northeast regions of Thailand where the B. siamensis were found (Kulsantiwong et 

al., 2013). However, the produced offspring were all dead after 2 weeks of laboratory 

rearing. Previous studies demonstrated the laboratory reared snail particularly 

juvenile is highly susceptible to be infected with pathogen (Chanawong, Waikagul, 

1991; Prasopdee et al., 2015). In the other words, defense system is not competent. 

This could be a leading cause of the laboratory offspring’s death after 2 weeks. 

However, as Thailand floods spread in 2011, northeast region where the B. siamensis 

goniomphalos distributed in was not affected (Mhuantong et al., 2015). Therefore, no 

snail hybridism concern is raised. In addition, likewise this study, there was no survey-

based hybridism report of Bithynia snails in Thailand. Although laboratory hybrid 

offspring can be produced from male and female of B. siamensis siamensis and B. 

siamensis goniomphalos, respectively, the border area of sample collection including 

central-northeast regions showed no report of hybridism. This is possible that there 

are natural boundaries between central and northeast regions which is difficult to 

spread across. Although B. funiculata and B. siamensis siamensis are found in the 

same area (central and north), there was no report of hybridism. This might be the 

morphologic and genetic background differences as mentioned above.  
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  Infectivity of O. viverrini in Bithynia snail was proved temperature dependent 

(Prasopdee et al., 2015). The chosen temperature of 28 ± 2 °C (room temperature) 

was applied to test the infectivity of O. viverrini in B. siamensis siamensis and B. 

funiculata due to it was demonstrated as optimum temperature (ranging from 22 to 

34 °C) of O. viverrini infection in the B. siamensis goniomphalos to generate high 

infection rates (Prasopdee et al., 2015). In addition, as reported by the Thai 

Meteorological Department, this temperature is comparable with average minimum 

and maximum weather temperatures in northeast Thailand in the hot weather period 

(March to October) between 1971 to 2000 were 23 – 35 °C. Previous study showed 

the percentage of natural O. viverrini infection in field B. siamensis goniomphalos 

snails was higher in the cold season (December to February) than other seasons 

(Brockelman et al., 1986). Moreover, metacercarial load in fish intermediate host was 

found most abundant in the late rainy and cold seasons (July to January) 

(Sithithaworn et al., 1997). This implies that the snails get infected with the parasites 

during the hot weather period and require about 2 months to liberate free-swimming 

cercariae (Harinasuta, Harinasuta, 1984; Upatham, Viyanant, 2003). The released 

cercariae encounter then infect the fish intermediate host and develop 

metacercariae within 6 weeks (Harinasuta, Harinasuta, 1984). Despite the Bithynia 

snail has two sexes male and female, the sex was not considered as independent 

factor in the experimental infection setting since there was no significantly difference 

of O. viverrini infection (Prasopdee et al., 2015). In cross sectional study, among three 

taxa of Bithynia in Thailand, B. siamensis goniomphalos was reported highest 

prevalence than other species (Kulsantiwong et al., 2015). Nevertheless, in 

experimental infection, B. funiculata and B. siamensis siamensis were demonstrated 
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more susceptible to O. viverrini than B. siamensis goniomphalos (Chanawong, 

Waikagul, 1991). However, of previous studies, the O. viverrini infection detection in 

Bithynia was solely based on cercarial shedding. Data present herein revealed the 

infection status of O. viverrini were detected by both observing elicited cercariae 

using cercarial shedding and observing specific band (330 bp) using specific primers 

PCR to O. viverrini. The latter step of O. viverrini detection was used to find whether 

throughout the time course of infection (1, 7, 14, 28 and 56 dpi), the Bithynia 

infected with intramolluskan stages or not (Prasopdee et al., 2015). Surprisingly, the 

susceptibility to O. viverrini infection in both B. siamensis siamensis and B. funiculata 

was high at 1 dpi (94% and 81.3%, respectively) thereafter dramatically declined at 

extra period of dpi for B. funiculata. In case of B. siamensis siamensis, the 

susceptibility at 7 dpi (75%) of was similar to 1 dpi. However, there was dramatically 

declined at 14 dpi and thereafter unsusceptible for later period of dpi. This possibly 

due to 2 distinct phenomena as proposed in previous study (Prasopdee et al., 2015) 

– 1) immune responses and 2) nutritional status of snails. Initial parasite invasion 

trigger immune responses of snails, which led to diminish and complete elimination 

of the parasites, respectively, hence the number of infected snails over time were 

decreased. Malnutrition of infected snails rearing under laboratory conditions 

resulted in poor condition for development of intramolluskan larval stages. In 

addition, snail death due to the harm arising from parasite infection are suggested, 

however this point remains murky and should be investigated further. In addition, we 

can observe that at the end of laboratory time course of infection (56 dpi) there was 

no liberated cercaria. However, specific PCR showed evidence of developed 

intramolluskan stages. At this point, it might be the poor nutrition of laboratory 
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rearing snail slowdowns the development of O. viverrini cercaria. Furthermore, at 56 

dpi, the susceptibility to O. viverrini infection in B. funiculata (25%) was shown higher 

than in B. siamensis siamensis where the infection was not observed. This signifies 

that O. viverrini cercaria development is prone to be achieving higher in B. funiculata 

host.          

    We can conclude that there was no occurrence of hybridism in Bithynia snail 

taxa in Thailand. However, this is solely based on field survey study. The 

experimental study should be further investigated in order to find an evidence of 

hybridism in Bithynia snails. However, the surveillance of O. viverrini infection in snail 

hosts should not be ignored as we can observe that the susceptibility to O. viverrini 

infection especially in B. funiculata was high.     
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ABSTRACT 

  Among snail species acting as hosts for parasites, three taxa of Bithynia are 

responsible for transmission of the carcinogenic liver fluke Opisthorchis viverrini to 

humans in Thailand. Despite Bithynia siamensis goniomphalos is a major species 

responsible for O. viverrini transmission in endemic area of Thailand, the rest two 

species B. siamensis siamensis and B. funucilata should not be ignored. To indicate a 

risk of O. viverrini infection outside the endemic area of Thailand, this study aimed to 

investigate the susceptibility to O .viverrini infection of B. siamensis siamensis and B. 

funiculata. The snails were infected with O. viverrini eggs and investigated throughout 

time course of 1, 7, 14, 28 and 56 day post infection (dpi). The susceptibility to O. 

viverrini infection in both B. siamensis siamensis and B. funiculata was high at early 

period of infection (1 and 7 day dpi) thereafter dramatically declined at extra period 

of dpi. Interestingly, at 56 dpi, the susceptibility to O. viverrini infection in B. 

funiculata (25%) was shown higher than in B. siamensis siamensis where the 

infection was not observed. In conclusion, surveillance of O. viverrini infection in snail 

hosts should be paid more attention as the high susceptibility to O. viverrini infection 

in B. funiculata was observed.   

  

Keywords: Bithynia siamensis siamensis, Bithynia funiculata, Opisthorchis viverrini, 

Cholangiocarcinoma, Thailand  
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INTRODUCTION 

  In Thailand, three taxa of Bithynia have been reported as natural first 

intermediate host of O. viverrini in different geographical habitats; Bithynia funiculata 

in the north, B. siamensis siamensis in the central and the north and B. siamensis 

goniomphalos in the northeast region (Wykoff et al., 1965; Brandt, 1974). The life 

cycle of the parasite requires contamination of a water body with feces containing 

parasite eggs of an infected definitive host. The snails become infected by ingesting 

the fully developed eggs. Miracidia hatch from the ingested eggs and then penetrate 

snail tissue to develop into sporocysts. Asexually reproduction and development 

generate large numbers of rediae and cercariae, the latter of which are released from 

the snail host. The released cercariae become metacercariae in fish and adult stage 

in fish-eating mammals, respectively. The natural infection rates of O. viverrini in 

Bithynia snails were varied from 0.083 to 3.04% (Wykoff et al., 1965; Upatham, 

Sukhapanth, 1980; Brockelman et al., 1986; Sri-aroon et al., 2005; Kiatsopit et al., 

2012; Prasopdee et al., 2015). In laboratory infection, B. funiculata and B. siamensis 

siamensis were 4-7 times more susceptible to O. viverrini than B. siamensis 

goniomphalos (Chanawong, Waikagul, 1991). However, research on B. funiculata and 

B. siamensis siamensis are scant. Among three taxa of Bithynia in Thailand, Research 

on B. siamensis goniomphalos has been widely published in many reputable journals 

(Suwannatrai et al., 2011; Tesana et al., 2012; Cantacessi et al 2013; Prasopdee et al., 

2014; Prasopdee et al., 2015, Prasopdee et al., 2015). The research on B. funiculata 

and B. siamensis siamensis should be more paid attention as they also play major 

role in O. viverrini transmission to humans outside the endemic area in Thailand. This 

study aimed to update investigation on the susceptibility of B. siamensis siamensis 
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and B. funiculata to O .viverrini infection with the conventional cercarial shedding 

along with PCR assay detection. This would allow parasitologist and malacologist to 

raise awareness of O. viverrini infection outside Northeast region of Thailand.    

 

MATERIALS AND METHODS 

Preparation of Bithynia snails 

   Bithynia siamensis siamensis and B. funiculata were collected from natural 

field. The snails were sorted and identified based on shell morphology following 

available protocols (Brandt, 1974; Upatham et al., 1983; Chitramvong, 1992). Each 

species of Bithynia snails was randomly selected and confirmed using specific 

primers (Duangprompo, 2007; Kulsantiwong, 2013; Kulsantiwong et al., 2013).  

  The snail samples were examined for trematode infection based on cercarial 

shedding method. The snails were placed individually into plastic container filled 

with 5 ml de-chlorinated tap water. Releasing of cercaria was induced by exposing 

the snails to 8 W electric light for at least 2 hours following with covering the snails 

with black plastic sheet for overnight. Uninfected snails of each species were used 

for further experiment. 

 

Preparation of O. viverrini eggs 

  Golden syrian hamsters (Mesocricetus auratus) were experimentally infected 

with 50 O. viverrini metacercariae per hamster. The infected animals were euthanized 

6 weeks post infection. O. viverrini adults were obtained from biliary tracts and gall 

bladders of hamsters and then washed with 0.85% sodium chloride solution. Mature 

eggs were dissected from the distal portion of the uterus of adult flukes under a 
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stereoscope (Khampoosa et al., 2012). The eggs were washed several times with 

distilled water and kept at room temperature for 2 weeks to undergo full maturation 

for further experimental infection (Chanawong, Waikagul, 1991). 

 

Testing of susceptibility 

   All snails were used for infection were full grown. A hundred snails per 

species were placed individually in transparent plastic containers with 6 ml of de-

chlorinated tap water and exposed to 50 embryonated O. viverrini eggs (Chanawong, 

Waikagul, 1991; Prasopdee et al., 2015). The snails were placed into plastic 

containers covered with porous lids and activated by exposure to electric light. Let 

the snails ingested parasite eggs freely under these conditions for 24 h. After that, the 

snails were washed and reared in same 15 x 20 cm glass container according to their 

species, with no more than 50 snails in each container. These snails were raised at 

room temperature with a dark and light cycle mimics the actual natural light 

conditions and fed on synthetic snail food (Sumethanurungkul, 1970). The containers 

were checked daily for mortality and dead snails were removed. All exposed snails 

were checked weekly for shedding of cercariae for a total of 80 days (Teodoro et al., 

2011). The first eight weeks post infections, 16 snails per time point were randomly 

selected and pre-patent examined using specific primers at 1, 7, 14, 28, and 56 day 

post infection. The snails that survive for 80 days without shedding of cercariae were 

examined for intramolluskan stages by crushing method.  

  DNA extraction and specific primer PCR was applied to examine susceptibility 

of snails to O. viverrini infection as described by Prasopdee et al (2015). Briefly, The 

soft bodies were homogenized in CTAB buffer (2% w/v CTAB, 1.4 M NaCl, 0.2% v/v 
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beta-mercaptoethanol, 20 mM EDTA, 100 mM Tris–HCl, pH 8 .0,0.2 mg/ml proteinase 

K) (Winnepenninckx et al.,1993), and then incubated at 55 °C for 6 hours. Snail 

homogenate proteins were precipitated with phenol/chloroform, centrifuged at 

12,000 × g for 10min at 4 ◦C. Protein was doubly precipitated with 

phenol/chloroform/isoamyl alcohol, centrifuged at 12,000 × g for 10 min at 4 ◦C, and 

DNA precipitated with isopropanol then washed twice with 70 % ethanol followed by 

absolute ethanol. The DNA pellet was air-dried, re-dissolved with TE buffer (10 mM 

Tris, 1 mM EDTA, pH 8.0), diluted to 10 ng/ul and used as template for PCR. 

  The specific primers, OV-6F (5′-CTG AAT CTC TCG TTT GTT CA-3′ ) and OV-6R 

(5′ -GTT CCA GGT GAG TCT CTC TA-3′ ) (Wongratanacheewin et al., 2001) were used 

to amplify the pOV-A6 specific region of 330 bp. The PCR reaction was performed 

using a DNA Thermal cycler, performed in a final volume of 10 ul with 0.04 ul TaKaRa 

Ex Taq 250 U, 1 ul dNTP mixture, 1 ul 10x Ex Taq buffer, 3 ul DNA sample, 3 ul 

distilled water, and 5 pmol of each primer. The PCR carried out with cycling 

conditions of initial denaturation at 94 ◦ C for 5 min followed by 35 cycles of 1 min 

denaturation at 94 ◦ C, 1 min annealing at 55 ◦C, and 1 min extension at 72 ◦C, 

followed by a final extension for 7 min at 72 ◦ C. PCR products were analyzed by 

1.5% TBE agarose gel electrophoresis. 

 

Statistical analysis 

   Infection rate of O. viverrini in natural field B. funiculata, B. siamensis goniomphalos 

and B. siamensis siamensis were reported as % prevalence of infection. The association 

between the laboratory O. viverrini infection (binary outcomes) of B. siamensis siamensis, 
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and B. funiculata and day post infection (predictor) was gauged by crude odds ratios 

obtained from binary logistic regression analysis.  

 

RESULTS 

Susceptibility of Bithynia snails to O. viverrini infection 

   Susceptibility of Bithynia snails to O. viverrini infection were examined based 

on cercarial shedding and specific primers PCR by presenting of O. viverrini cercaria 

and 330 bp specific band of PCR product, respectively (Figure 1). Based on cercarial 

shedding, there was no released O. viverrini cercariae were detected throughout time 

course of laboratory infection and there was no Bithynia snails survived until 80 dpi. 

However, based on molecular based-detection, O. viverrini infection was detected by 

revealing the specific band (Table 1). The odds ratio (OR) for association between 

susceptibility to O. viverrini infection of Bithynia snails and day post infection (dpi) 

are presented (see Table 2 and Table 3). There was evidence of an association 

between dpi and susceptibility to infection of B. siamensis siamensis that at least 

two groups differed (Twald=11.309, df=4, P=0.023). Relative to day 1 (as baseline), 

there was a decrease in odds of infection for 14 dpi (P = 0.03), where at 14 dpi was 

associated with a 3% decrease in the odds of infection (P = 0.003). At 7 dpi showed 

susceptibility to infection was similar to 1 dpi (P = 0.2). Interestingly, there was no 

infection detected at 28 and 56 dpi. There was evidence of an association between 

dpi and susceptibility to infection of B. funiculata that at least two groups differed 

(Twald=16.065, df=4, P=0.03). Relative to day 1 (as baseline), there was a decrease in 

odds of infection for 7, 28 and 56 dpi (P < 0.05). However, at 14 dpi was not showed 

statistical evidence of a decrease in odds of infection, there was no infection 
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detected. There was evidence that at 7 and 56 dpi were associated with a 7.7% 

decrease in the odds of infection (P = 0.003). At 28 dpi, 1.5% decrease in the odds of 

infection was shown associated (P = 0.001).  

 

DISCUSSIONS AND CONCLUSION  

  Infectivity of O. viverrini in Bithynia snail was proved temperature dependent 

(Prasopdee et al., 2015). The chosen temperature of 28 ± 2 °C (room temperature) 

was applied to test the infectivity of O. viverrini in B. siamensis siamensis and B. 

funiculata due to it was demonstrated as optimum temperature (ranging from 22 to 

34 °C) of O. viverrini infection in the B. siamensis goniomphalos to generate high 

infection rates (Prasopdee et al., 2015). In addition, as reported by the Thai 

Meteorological Department, this temperature is comparable with average minimum 

and maximum weather temperatures in northeast Thailand in the hot weather period 

(March to October) between 1971 to 2000 were 23 – 35 °C. Previous study showed 

the percentage of natural O. viverrini infection in field B. siamensis goniomphalos 

snails was higher in the cold season (December to February) than other seasons 

(Brockelman et al., 1986). Moreover, metacercarial load in fish intermediate host was 

found most abundant in the late rainy and cold seasons (July to January) 

(Sithithaworn et al., 1997). This implies that the snails get infected with the parasites 

during the hot weather period and require about 2 months to liberate free-swimming 

cercariae (Harinasuta, Harinasuta, 1984; Upatham, Viyanant, 2003). The released 

cercariae encounter then infect the fish intermediate host and develop 

metacercariae within 6 weeks (Harinasuta, Harinasuta, 1984). Despite the Bithynia 

snail has two sexes male and female, the sex was not considered as independent 
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factor in the experimental infection setting since there was no significantly difference 

of O. viverrini infection (Prasopdee et al., 2015). In cross sectional study, among three 

taxa of Bithynia in Thailand, B. siamensis goniomphalos was reported highest 

prevalence than other species (Kulsantiwong et al., 2015). Nevertheless, in 

experimental infection, B. funiculata and B. siamensis siamensis were demonstrated 

more susceptible to O. viverrini than B. siamensis goniomphalos (Chanawong, 

Waikagul, 1991). However, of previous studies, the O. viverrini infection detection in 

Bithynia was solely based on cercarial shedding. Data present herein revealed the 

infection status of O. viverrini were detected by both observing elicited cercariae 

using cercarial shedding and observing specific band (330 bp) using specific primers 

PCR to O. viverrini. The latter step of O. viverrini detection was used to find whether 

throughout the time course of infection (1, 7, 14, 28 and 56 dpi), the Bithynia 

infected with intramolluskan stages or not (Prasopdee et al., 2015). Surprisingly, the 

susceptibility to O. viverrini infection in both B. siamensis siamensis and B. funiculata 

was high at 1 dpi (94% and 81.3%, respectively) thereafter dramatically declined at 

extra period of dpi for B. funiculata. In case of B. siamensis siamensis, the 

susceptibility at 7 dpi (75%) of was similar to 1 dpi. However, there was dramatically 

declined at 14 dpi and thereafter unsusceptible for later period of dpi. This possibly 

due to 2 distinct phenomena as proposed in previous study (Prasopdee et al., 2015) 

– 1) immune responses and 2) nutritional status of snails. Initial parasite invasion 

trigger immune responses of snails, which led to diminish and complete elimination 

of the parasites, respectively, hence the number of infected snails over time were 

decreased. Malnutrition of infected snails rearing under laboratory conditions 

resulted in poor condition for development of intramolluskan larval stages. In 
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addition, snail death due to the harm arising from parasite infection are suggested, 

however this point remains murky and should be investigated further. In addition, we 

can observe that at the end of laboratory time course of infection (56 dpi) there was 

no liberated cercaria. However, specific PCR showed evidence of developed 

intramolluskan stages. At this point, it might be the poor nutrition of laboratory 

rearing snail slowdowns the development of O. viverrini cercaria. Furthermore, at 56 

dpi, the susceptibility to O. viverrini infection in B. funiculata (25%) was shown higher 

than in B. siamensis siamensis where the infection was not observed. This signifies 

that O. viverrini cercaria development is prone to be achieving higher in B. funiculata 

host.          

    We can conclude the surveillance of O. viverrini infection in snail hosts 

should not be ignored as we can observe the susceptibility to O. viverrini infection 

especially in B. funiculata was high.     
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Figure 1 Detections of O. viverrini infection in snails. 330 bp specific band of PCR 

product for O. viverrini; lane M = 100bp DNA ladder, lane 1 = Negative control, lane 

2-3 = positive to O. viverrini infection.   
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Table 1 Percentage of susceptibility to O. viverrini infection of B. siamensis siamensis 

and B. funiculata categorized by post infection (dpi) 

% positive snails 

 

dpi 

B. siamensis siamensis 

(positive/total) 

B. funiculata 

(positive/total) 

1 94 (15/16) 82 (13/16) 

7 75 (12/16) 25 (4/16) 

14 32 (5/16) 0 (0/16) 

28 0 (0/16) 7 (1/16) 

56 0 (0/16) 25 (4/16) 

overall 40 (32/80) 28 (22/80) 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

Table 2 Association between infection and day post infection of B. siamensis 

siamensisi 

Day post infection OR 95% CI 

1 (reference) Twald=11.309, df=4, P=0.023  

7 0.200 0.020-2.033 

14 0.030* 0.003-0.297 

28 0.000 - 

56 0.000 - 

* Indicate significance at P< 0.05, i Results of association are shown as odds ratio (OR). 
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Table 3 Association between infection and day post infection of B. funiculatai 

Day post infection OR 95% CI 

1 (reference) Twald=16.065, df=4, P=0.03  

7 0.077* 0.014-0.417 

14 0.000 - 

28 0.015* 0.001-0.167 

56 0.077* 0.014-0.417 

* Indicate significance at P< 0.05, i Results of association are shown as odds ratio (OR). 
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Abstract

Research on the effects of environmental factors influenced by climate change on parasite
transmissibility is an area garnering recent attention worldwide. However, there is still a
lack of studies on the life cycle of Opisthorchis viverrini, a carcinogenic trematode found in
countries of the Lower Mekong subregion of Lao PDR, Cambodia, Myanmar, Vietnam and
Thailand. To evaluate the influences of environmental factors water temperature and salinity
on the transmissibility of the liver fluke O. viverrini through cercarial stage, longevity of
O. viverrini cercaria was examined at different experimental temperatures (22°C, 30°C and
38°C) and salinities (2.5 parts per thousand (PPT), 3.75 PPT and 5 PPT). The results reveal
that different temperatures have statistically significant effects on cercarial longevity. The cer-
cariae exhibited a thermostability zone ranging between 22°C and 30°C. Cercarial longevity
was significantly shortened when water temperatures reached 38°C. Salinity also plays a key
role in cercarial longevity, with cercarial survival significantly shorter at a salinity of 3.75
PPT than at 2.5 PPT and 5 PPT. A combined analysis of salinity and temperature revealed
unique trends in cercarial longevity. At all experimental salinities, cercarial longevity was low-
est when incubated in 38°C, but statistically significant from cercarial longevity at tempera-
tures of 22°C and 30°C, and salinities of 2.5 PPT and 5 PPT. The results suggest that
higher temperatures negatively impact parasite longevity. This reflects that O. viverrini trans-
mission patterns may be impacted by changes in water temperature and salinity resulting from
climate change.

Introduction

Opisthorchis viverrini is a highly endemic liver fluke found in the Lower Mekong subregion
countries Lao PDR, Cambodia, Myanmar, Vietnam and Thailand (Sithithaworn et al., 2012;
Aung et al., 2017). At least ten million people worldwide are infected with this parasite,
and more than 67 million people are at risk of being infected (Andrews et al., 2008; Keiser
& Utzinger, 2009; Traub et al., 2009). Chronic O. viverrini infections have proven to be a pre-
cipitating factor in the development of cholangiocarcinoma (CCA), a bile duct cancer (IARC,
2002; Bouvard et al., 2009). In order for the parasite to infect humans, freshwater snails from
the genus Bithynia and freshwater fish from the family Cyprinidae must first become the para-
site’s first and second intermediate hosts, respectively (Wykoff et al., 1965). Piscivorous mam-
mals including cats and dogs also act as reservoir hosts for the parasite. In the first
intermediate host, the Bithynia snail, O. viverrini undergoes asexual reproduction through sev-
eral intramolluscan stages of sporocysts, rediae and cercariae. Thereafter, these cercariae excyst
and become free-swimming, finding and encysting under the scales and in the flesh of the
second intermediate host, Cyprinid fish, as metacercariae (Wykoff et al., 1965; WHO, 1995;
Sithithaworn & Haswell-Elkins, 2003). Humans and reservoir hosts become infected by con-
suming freshwater fish containing metacercariae.

Due to its complex transmission cycle, O. viverrini infections remain an unresolved prob-
lem (Vonghachack et al., 2017). In the endemic areas of north-eastern Thailand and southern
Laos, the prevalence of O. viverrini was found to be high in fish, at 26.9%–97% (Vichasri et al.,
1982; Vonghachack et al., 2017), and low in snails, at 0.3%–3.04% (Sri-Aroon et al., 2005;
Kiatsopit et al., 2012; Prasopdee et al., 2015; Vonghachack et al., 2017). The rate of infection
in cats, one of the parasite’s reservoir hosts, was found to be slightly high, at 35.5%–53.1%
(Enes et al., 2010; Aunpromma et al., 2012; Vonghachack et al., 2017). This indicates that cer-
cariae play a key role in host-to-host transmission. As the Fifth Assessment Report of The
United Nations Intergovernmental Panel on Climate Change (IPCC) indicates, climate change
ultimately results in rising temperatures and changes in intensity and frequency of rainfall
(Stocker et al., 2013), thus affecting both the temperature and salinity of water sources.
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Presently, the effect of climate change on parasitic transmission is
an area of interest currently attracting attention (Poulin, 2006;
Morley, 2011; Barber et al., 2016). The rising global temperatures
may impact the parasitic transmission to humans due to the
temperature-dependent metabolism of non-feeding free-
swimming cercariae (Mouritsen, 2002; Thieltges & Rick, 2006;
Koprivnikar et al., 2010). As the longevity of the cercariae
increases, the chances that the parasites will be exposed to a
host increase. However, it is important to recognize that the lon-
gevity of temperature-mediated cercariae is likely a character spe-
cific to the parasite’s species. Previous reports have demonstrated
that the cercariae of Transversotrema patialensis could survive for
approximately 44 h at water temperatures of 24°C (Anderson &
Whitfield, 1974), while the cercariae of Plagiorchis elegans could
only survive in such temperatures for 30 h (Lowenberger &
Rau, 1994). However, an increase in water temperatures is more
likely to decrease the overall cercarial survival times (Mouritsen,
2002; Thieltges & Rick, 2006; Studer & Poulin, 2013). Despite
scant reports on O. viverrini infectivity in host snail increasing
as water temperature increases (Prasopdee et al., 2015), little is
known regarding the influence of temperature on O. viverrini cer-
cariae. Nevertheless, temperatures continue to rise; past reports
from the Thai meteorological department reports average air tem-
peratures during the cool and dry seasons of the years 1981 to
2010 to be 24.2°C, with mean minimum and mean maximum
air temperatures of 18°C and 30°C. In addition to temperature,
salinity has also been recognized as one of the most important
environmental influences on parasite biology (Zander, 1998;
Koprivnikar et al., 2010; Studer & Poulin, 2013). Based on the dis-
tribution and density of Bithynia snails in north-east Thailand, an
area endemic with opisthorchiasis and opisthorchiasis-induced
CCA, it was found that Bithynia snails prefer brackish water
over fresh water, with the highest snail population densities
found in areas where the water salinity ranges from 2.5 parts
per thousand (PPT) to 5 PPT (Suwannatrai et al., 2011).
Despite these reports, the effects of these levels of salinity on
O. viverrini cercariae are unknown. All in all, there are also a
lack of experimental studies on the effects of global warming
and salinity on the longevity of O. viverrini cercariae.

The aim of the present study is to investigate the effects of tem-
perature and salinity on the overall survival of O. viverrini cer-
cariae in order to develop a better understanding of O. viverrini
cercarial transmission and, thus, establish strategies for the sur-
veillance and control of this snail-borne parasitic disease in the
context of climate change.

Materials and methods

Procurement of snail samples

Opisthorchis viverrini cercariae were obtained by collecting
Bithynia siamensis goniomphalos snails, the parasite’s first inter-
mediate hosts, from Bueng Niam, Mueang Khon Kaen District,
Khon Kaen Province, Thailand (16°26’50.64′′N, 102°54’10.
5048′′E).

Assessment of snail infection status

The sample snails were then screened for infection by O. viverrini
cercariae using the cercarial shedding method. The snails were
first exposed to 3 h of constant light from an 8-W LED bulb dur-
ing the daytime. The shed cercariae were then identified under a

stereomicroscope according to the parasite’s morphologic features
published in the available literature (Frandsen & Christensen,
1984). Morphologically similar cercariae were then confirmed to
be O. viverrini through the use of a polymerase chain reaction
(PCR) protocol described by Wongratanacheewin et al. (2001)
targeting the pOV-A6 gene. The presence of specific amplicons
of approximately 330 bp in size was considered to denote O. viver-
rini cercariae. Snails which were found to shed the cercariae of
O. viverrini, and, thus, infected with the parasite, were selected
for the experiment.

Experimental procedure

The selected snails were randomly assigned to each salinity group.
Four snails were placed into plastic cups 4 cm in diameter along
with 15 ml of saline solutions at the salinity level corresponding to
each experimental group. The saline solutions of differing salinity
levels, defined as the amount of salt dissolved in a certain volume
of water and measured in PPT, was prepared by mixing salt
sodium chloride (NaCl) (VWR BDH Prolabo, Leuven, Belgium)
with distilled water. The saline solutions were prepared at the
experimental salinities of 2.5 PPT, 3.75 PPT and 5 PPT. The snails
were once again exposed to 1 h of constant light from an 8-W
LED bulb at room temperature, which stimulated the cercariae
to emerge from the snail. The snail was then removed from the
cups. The plastic cups containing the cercariae were then sub-
merged in a water bath set to different experimental temperatures
(22°C, 30°C, 38°C – chosen based on published reports from the
Thai Meteorological Department) while facing light sources that
matched the daily light–dark cycle. Every 2 h the number of
dead cercariae in each container was measured. The plastic cups
were transferred to a smaller water bath under a stereomicroscope
consisting of a petri dish filled with water of the same temperature
as the water bath. Under the stereomicroscope, all cercariae were
observed for motion. All motionless cercariae were stimulated
with a 25-gauge needle (McCarthy, 1999; Koprivnikar et al.,
2010). If the cercariae remained motionless after stimulation, it
was declared dead, removed from the plastic cup and tallied.
The plastic cup was then returned to the large water bath of the
same temperature for another 2 h before another round of count-
ing. This counting process was continued until all the cercariae in
each plastic cup died.

Statistical analyses

Statistical analyses were performed using IBM SPSS Statistics for
Windows, version 22.0. (IBM Corp, Armonk, NY, USA).
Parametric assumptions, normal distributions and homogeneity
of variance were tested beforehand in order to confirm whether
the data met the assumptions. The Kolmogorov–Smirnov
‘Goodness-of-Fit’ test was first used in conjunction with a normal
probability plot to determine if the survival data was congruent
with that of a normal distribution. If P > 0.05, then the data are
parametric, and the data would then be tested for homogeneity
of variance. However, if P < 0.05, then the data are compared
with the normal Q–Q plot in order to check for normality.
The data are normally distributed if they follow the diagonal
line closely and do not appear to have a non-linear pattern.
The Levene test was then used to determine the homogeneity of
variance; if P > 0.05, then the data have homogeneity of variance.
If the survival data proved to be normally distributed and their
homogeneity of variance is true, a one-way analysis of variance
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(ANOVA) and subsequent Scheffe post-hoc analysis would then
be performed to determine if there were statistically significant
differences between the survival times of each group. However,
if the survival data proved to be non-parametric, the non-
parametric Kruskal–Wallis test would be used instead to analyse
the data, followed by a pairwise comparison (Dunn test) to deter-
mine if there were statistically significant differences between the
survival times of each group.

In order to find associations between salinity and cercarial sur-
vival, data of different temperature treatments with the same
experimental salinity were pooled and subsequently analysed. In
order to find associations between temperature and cercarial sur-
vival times, survival data of different salinity levels at the same
experimental temperatures were pooled and analysed. The correl-
ation between temperature–salinity combinations and survival of
cercariae incubated at 22°C, 30°C and 38°C were analysed accord-
ing to experimental salinity. This was to determine whether cer-
carial survival was temperature–salinity dependent.

Results

Infection rate

Of all the collected snails, 12 out of 772 were positive for O. viver-
rini infection. Thus, the infection rate was 1.55% in snails with a
shell length of greater than 0.6 mm.

Temperature

Survival data of different salinity levels at the same experimental
temperatures were pooled and analysed, revealing mean survival
times ± standard deviation (SD) (along with median and the
interquartile range (IQR)) for O. viverrini cercariae incubated at
22°C, 30°C and 38°C to be 34.71 ± 18.44 h (24, 26), 29.68 ±
8.7 h (28, 10) and 19.91 ± 1.87 h (20, 2), respectively. At the
observed time points of 22 h (43.5%; 232/533), 30 h (17%; 63/
371) and 20 h (44%; 121/275), the largest percentages of cercariae
found to be dead were at the respective temperatures of 22°C, 30°
C and 38°C. Thus, cercarial longevity decreases with increasing
temperatures (fig. 1). The Kolmogorov–Smirnov test and
Levene test confirmed that the temperature–cercarial survival
data set was non-parametric. Median survival times were used,
which resulted in the optimum incubation temperature being
30°C (28), rather than at 22°C (24) or 38°C (20). In order to
find associations between temperature and cercarial survival
times, the Kruskal–Wallis test was applied, revealing a significant
correlation between temperature and cercarial survival times
(χ2 (2) > 393.5, P < 0.001). Median survival times of cercariae
incubated at 22°C, 30°C and 38°C were found to be 24 h, 28 h
and 20 h, respectively. Survival times of cercariae incubated at
22°C at 30°C were found to not be significantly different from
each other (P > 0.05). However, at the highest experimental tem-
perature of 38°C, there were significantly different cercarial sur-
vival times compared to survival times at 30°C (P < 0.01) and
22°C (P < 0.01), with a two-fold decrease in survival times.

Salinity

The Kolmogorov–Smirnov test with Q–Q plot analysis and
Levene test confirmed that the salinity–cercarial survival data
set was parametric. In order to analyse the effects of salinity on
cercarial survival, data of different temperature treatments with

the same experimental salinity were pooled and subsequently ana-
lysed using a one-way ANOVA followed by a Scheffe post-hoc
analysis. Mean survival times ± SD were found to be 30.94 ±
13.79 h at 2.5 PPT, 27.27 ± 14.01 h at 3.75 PPT and 30.40 ±
15.5 h at 5 PPT. Mean survival was significantly greater at 2.5
PPT than at 3.75 PPT (P < 0.05; mean difference: 3.67; 95% con-
fidence interval (CI): 1.08, 6.25) and at 5 PPT versus at 3.75 PPT
(P < 0.05; mean difference: 3.13; 95% CI: 0.55, 5.70). However,
there was no difference between survival at 2.5 PPT and at 5
PPT (P = 0.86; mean difference: 0.53; 95% CI: −1.92, 3.00)
(fig. 2). The highest percentage of dead cercariae was observed at
22 h, with 21.7% (91/419) of all cercariae dead at 5 PPT, 27.1%
(94/347) dead at 3.75 PPT and 21.8% (90/413) dead at 2.5 PPT.

Salinity–temperature combinations

The survival of cercariae incubated at 22°C, 30°C and 38°C were
analysed according to experimental salinity. Temperature–salinity
combinations were found to be non-parametric, according to the
Kolmogorov–Smirnov and Levene tests. In terms of correlates
between temperature–salinity combinations and cercarial survival,
the Kruskal–Wallis test was used, revealing evidence indicating
survival of cercaria was temperature–salinity dependent. At 2.5
PPT, a total of 413 cercariae were analysed, revealing significant
differences in cercarial survival at different temperatures (χ2 (2)
> 118.19; P < 0.001). The mean ± SD (along with median, IQR)
survival of cercariae incubated at 22°C, 30°C and 38°C was
33.83 ± 16.74 (24, 26), 32.39 ± 9.26 (30, 16) and 20.40 ± 2.22
(20, 4), respectively. Pairwise comparisons demonstrated no sig-
nificant differences between cercarial survival at 22°C and 30°C.
However, cercarial survival at 38°C was statistically significant
compared to the lower experimental temperatures of 22°C and
30°C (P < 0.001). A total number of 347 cercariae at 3.75 PPT
were analysed, and revealed a significant difference of survival
at different temperatures (χ2 (2) > 79.47, P < 0.001), with mean
± SD (along with median, IQR) cercarial survival at 22°C, 30°C
and 38°C of 32.59 ± 18.7 (22, 6), 28.75 ± 11.49 (26, 26) and
20.34 ± 1.78 (20, 1), respectively. Thus, at 3.75 PPT, cercarial sur-
vival was significantly different at all temperatures. At 5 PPT, a
total of 419 cercariae were analysed. Significant differences of sur-
vival in different degrees of temperature was revealed (χ2 (2) >
184.10; P < 0.001), with mean ± SD (along with median, IQR) of
cercariae incubated at 22°C, 30°C and 38°C of 36.95 ± 19.72
(24, 42), 27.60 ± 3.98 (29, 4.5) and 18.77 ± 0.98 (18, 2), respect-
ively. There was no evidence indicating the difference between
survival times of cercariae incubated in 22°C and 30°C.
However, at the high temperature of 38°C, cercarial survival was
significantly different from cercariae incubated at lower experi-
mental temperatures (P < 0.001) (see table 1).

Discussion

As a foodborne trematode, O. viverrini must first mature from
free-swimming cercariae into infective metacercariae. However,
it is during this cercarial stage that the parasite is exposed to
many environmental factors, making it a critical part of O. viver-
rini’s life cycle. As previous studies have reported that O. viverrini
infections in snails, its first intermediate host, are temperature
dependent (Prasopdee et al., 2015), one of the objectives of this
study is to investigate the effects of temperature on the survival
of cercariae. The incubation temperatures 22°C, 30°C and 38°C
were chosen as they represent the air temperatures of the endemic
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north-eastern Thailand (Harinasuta & Harinasuta, 1984;
Haswell-Elkins et al., 1994; Jongsuksuntigul & Imsomboon,
2003). According to latest Thai Meteorological Department
reports of air temperatures during the cool and dry seasons of
the years 1981 to 2010, the mean air temperature was reported
to be 24.2°C, and the mean minimum and maximum air tempera-
tures were reported to be 18°C and 30°C, respectively. Due to
reports indicating an increase in O. viverrini infections in field
snails during the cool-dry season in north-eastern Thailand
(Brockelman et al., 1986) and the geographically similar Laos
(Kiatsopit et al., 2014), the experimental temperatures of 22°C
and 30°C were selected to represent these weather conditions.
The highest experimental temperature of 38°C was chosen to
represent the effects of global warming, which caused a 0.2°C
increase in global temperatures per decade during the late 19th
century, until the first half-decade of the 20th century (Hansen
et al., 2006). As Thai Meteorological Department reports of
mean air temperatures in north-eastern Thailand during 1981–

2010 have a mean maximum temperature of 35.2°C, and even
reached a record high of 43.9°C in 1960, the experimental tem-
perature is not out of the realm of possibility, especially when pre-
vious studies have demonstrated a considerably low 3°C deviation
between air temperature and water temperature (Prasopdee,
2013). The results of this experiment support the hypothesis
that temperature affects the survival of O. viverrini cercariae,
with high temperatures decreasing the survival of the cercariae,
similarly to the results of studies in other trematodes
(McCarthy, 1999; Mouritsen, 2002; Thieltges & Rick, 2006;
Koprivnikar et al., 2010). This may be explained by the fact
that cercariae are non-feeding and must use energy from non-
renewable glycogen stores (Ginetsinskaya, 1988), which, at higher
temperatures, may require the increased usage of glycogen,

Fig. 1. Cercarial survival at different experimental temperatures. Percentage of surviving O. viverrini cercariae at the incubation temperatures of 22°C, 30°C and 38°C
(obtained from 533 cercariae, 371 cercariae and 275 cercariae, respectively).

Fig. 2. Mean cercarial survival at different experimental salinities. Mean (±SD) survival
time of O. viverrini cercariae at the saline solutions of 2 PPT, 3.75 PPT and 5 PPT.
*Indicates statistical significance (P < 0.05) analysed using a one-way ANOVA test fol-
lowed by Scheffe post-hoc analysis (N = 413, 347 and 419 for 2 PPT, 3.75 PPT and 5
PPT, respectively).

Table 1. Pairwise comparisons of salinity–temperature combinations with
cercarial survival.

Salinity (PPT) ×
temperature (°C) N Median IQR Mean (±SD)

2.5 PPT 413

22°C 201 24 26 33.83 ± 16.74a

30°C 138 30 16 32.39 ± 9.26a

38 °C 74 20 4 20.40 ± 2.22b

3.75 PPT 347

22°C 131 22 6 32.59 ± 18.701

30°C 95 26 26 28.75 ± 11.492

38°C 121 20 1 20.34 ± 1.783

5 PPT 419

22°C 201 24 42 36.95 ± 19.72i

30°C 138 29 4.5 27.60 ± 3.98i

38°C 80 18 2 18.77 ± 0.98ii

Statistically significant differences were analysed using the Kruskal–Wallis test followed by a
pairwise comparison.
a,bSignificant differences at 2.5 PPT (P < 0.01).
1,2,3Significant differences at 3.75 PPT (P < 0.01).
i,iiSignificant differences at 5 PPT (P < 0.01).
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ultimately shortening the parasite’s lifespan (Ginetsinskaya,
1960). Interestingly, statistical analysis demonstrates that only sur-
vival times of the cercariae studied at 38°C were statistically sig-
nificant from 22°C and 30°C; however, cercariae studied
between 22°C and 30°C were not found to be statistically signifi-
cant from each other, which indicates that this temperature range
is the thermostability zone specific to O. viverrini cercariae. This
phenomenon is also observed in the Tanzanian strain of
Schistosoma mansoni, where glycogen utilization remains con-
stant between 18°C and 27°C, but dramatically rises when the
temperature exceeds 27°C (Purnell, 1966; Morley, 2011).This is
consistent with reports on wild snails infected with O. viverrini,
where it was found that cercarial emerge peaks between 8 AM
and 10 AM during the hot season, and between 12 PM and 2
PM during the cool-dry and rainy seasons (Kiatsopit et al.,
2014). Measurements of water temperatures during these time
frames were found to be consistent with the zone of thermostabil-
ity derived from the results of this study. Although the rise in
average water temperatures due to global warming may appear
to shorten cercarial lifespans, the effects of rising water tempera-
tures on other aquatic animals, including O. viverrini’s second
intermediate host, the fishes, remains uncertain. As such, further
studies on cercarial infectivity and metacercarial burden are
required.

Another factor important to cercarial survival and longevity is
the salinity of water. The salinity values chosen for this experi-
ment, at 2.5 PPT, 3.75 PPT and 5 PPT, were chosen to represent
zones with the highest density of Bithynia snails found in the
endemic north-eastern Thailand (Suwannatrai et al., 2011).
From the results above, cercarial survival at salinities of 2.5 PPT
and 5 PPT were significantly higher than the cercarial survival
at 3.75 PPT, suggesting that salinity plays a role in cercarial sur-
vival, despite the results of past reports (Rees, 1948; Mouritsen,
2002). However, the mechanisms behind this trend remain
unclear, and, thus, require further study.

When data from both salinity and temperature were analysed
together, it was found that O. viverrini cercarial survival was high-
est at extremes of salinity such as at 2.5 PPT and 5 PPT, rather
than at a moderate salinity level of 3.75 PPT. However, when cer-
carial survival at these extremes of salinity were studied at a tem-
perature of 38°C, cercarial survival at both salinities significantly
shortened, correlating to cercarial survival when only temperature
is concerned. Although cercarial survival at 38°C was shortest
when salinity was at 3.75 PPT, survival times were statistically sig-
nificant compared to temperatures of 22°C and 30°C, unlike sur-
vival times between temperatures studied at the other two levels of
salinity. This suggests that cercariae become more sensitive to
changes and extremes of temperatures when the water salinity is
moderate, at a level of 3.75 PPT. Thus, it can be inferred that sea-
sonal temperature changes play a significant role in overall cercar-
ial survival. During the hot-dry and cool-dry seasons, water
salinity levels increase due to increased evaporation from sun
and wind exposure. Conversely, during the rainy seasons, water
salinity levels decrease due to dilution from increased rainfall.
As demonstrated by the results above, variations in salinity levels
may play a role in O. viverrini transmission patterns. In addition
to influencing cercarial survival, salinity is positively correlated
with the first intermediate Bithynia host populations, as it is
with second intermediate cyprinid host populations (Kim et al.,
2016). This may create conditions ideal for O. viverrini transmis-
sion during the hot-dry and cool-dry seasons. However, from past
studies, metacercarial burden in the cyprinid fishes was highest

during the late rainy season and throughout the cool-dry season,
but lowest during the hot-dry season (Sithithaworn et al., 1997).
Since Bithynia snails prefer to stay in shallower, warmer waters
(Suwannatrai et al., 2011), O. viverrini cercariae will be exposed
to temperatures higher than their thermostability zone, resulting
in shortened longevity that may lead to shorter metacercarial lon-
gevity and, ultimately, an overall decrease in the number of
infected fish during the hot-dry season. In addition to salinity
and temperature, water contaminants such as fertilizers influence
the local fish and snail population, thus affecting the transmissi-
bility of O. viverrini (Kim et al., 2016).

Although the results of this study imply that rising global tem-
peratures impair the transmissibility of O. viverrini during the
cercariae–metacercariae transition period as a result of shortened
cercarial longevity, conclusions cannot yet be drawn. This is due
to a lack of studies on the effects of salinity and temperature on
the infectivity of O. viverrini cercariae, as it is unknown whether
these factors are favourable to parasite infectivity. This is also true
concerning cercarial emergence, as more studies are required to
determine how variations in temperature affect cercarial emer-
gence. Overall, although the results of this study suggest that O.
viverrini is negatively affected by rising global temperatures and
salinities, further studies on the different aspects of the parasitic
life cycle – namely, longevity, infectivity and cercarial emergence
– are required before any accurate predictions can be made.
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APPENDIX A 

Reagents and procedures of metacercaria preparation 
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Reagents and procedures of metacercaria preparation 

1. 0.25% pepsin solution 

   Pepsin A powder      2.5  g 

    HCl           1.0  ml 

   NaCl         8.5  g 

    Distilled water  to a final volume of    1,000  ml 

2. 0.85% NaCl 

   NaCl         8.5 g  

   Filtered water to a final volume of          1,000 ml 

3. Procedures 

  3.1. Crushed and spun fish in 0.25% pepsin until incorporated. 

   3.2. Incubated in shaking water bath at 37 °C for 1 h. 

  3.3. Filtered samples with grating at 1,000 and 300, respectively. 

  3.4. Filtered pass-through fraction with grating at 106 µm.  

     3.5. Discarded the pass-through fraction and washed the rest by several 

  times with 0.85% NSS in sedimentation jar until the supernatant clear.  

  3.6. Filtered by grating at 250 µm and examined sediment for metacercariae. 

  3.7. Collected O. viverrini metacercariae under dissecting microscope.  
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APPENDIX B 

Reagents for DNA extraction 
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Reagents for DNA extraction 

1. 2X CTAB buffer  

CTAB (Cetyltri-ammonium bromide, C12H42NBr=)  2.00  g 

1.4 M NaCl       8.18  g 

20 mM EDTA, pH 8.0       0.75  g 

100 mM Tris-HCl      1.21  g 

Add distilled water to a final volume of 100 ml 

Autoclave before used 

CTAB buffer 

Add 0.2 % of 2-mercaptoethanol 200 μl into 2X CTAB (adjust before used). 

2. TE buffer, pH 8.0 

10 mM Tris-HCl, pH 8.0     1.00  ml of 1 M 

1 mM EDTA, pH 8.0             200.00 μl of 0.5 M 

Add distilled water to a final volume of 100 ml 

Autoclave before used 

3. Phenol  

 Phenol  (Merk)             25.00  g 

 1 M Tris-HCL (pH 8.0) (Amresco)           25.00  ml 

 8-Quinolinol (Sigma)                 0.025  g 

 Mixed immediately and then centrifuge at 3,000 rpm 10 min. Discard the 

supernatant and then added 0.1 M Tris-HCL (pH 8.0) 25.0 ml and centrifuged at 3,000 

rpm 10 min. Discard the supernatant again and then repeated with 0.1 M Tris-HCL 

(pH 8.0) 25.0 ml and 2-mercaptoethanol 0.125 ml and then centrifuged at 3,000 rpm 

10 min. Discard the supernatant and kept saturated phenol at 4 °C until used. 
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4. Chloroform (CHCl3) 

5. 1M Tris-HCl (pH 8.0) 

Tris base (C4H11NO3=121.1 g/mole)  (Amresco) 121.01 g 

HCl (Merk)               42.00  ml 

Add distilled water to a final volume of       1,000.00    ml 

Adjust to pH 8.0 with HCl 

Autoclave before used 

6. 0.5 M EDTA (Ethylene diamine tetraacetic acid) (pH 8.0) (Vivantis) 

EDTA (C10H14O8N2Na2.2H2O) (MW=372.2g/mole)   186.10      g 

NaOH (MW=40g/mole)                     20.00     g 

Distilled water                    800.00     ml 

Adjust to pH 8.0 with NaOH 

Add distilled water to a final volume of              1,000.00     ml 

7. 70% ethanol (Merk) 

Absolute ethanol            80.00    ml 

Add distilled water to a final volume of                  100.00    ml 

8. 0.5 M NaCl (Sodium chloride) (BDH) 

NaCl (MW=58.44g/mole)                    292.20    g 

Add distilled water to a final volume of               1,000.00    ml 

Autoclave before used 

9. Proteinase K 0.4 mg/ml (Invitrogen) 

Proteinase K 20 mg/ml          20.00    µl 

Distilled water                     980.00    µl 

Aliquots before use and Stored at -20 °C 
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10. 0.5 M NaOH (BDH) 

 NaOH             20.00    g 

 Add distilled water to a final volume of                 100.00    ml 

11. TE buffer 

 10 mM Tris-HCL (pH 8.0)              10.00 ml of 1 M 

 1 mM EDTA (pH 8.0)             200.00 µl of 0.5 M 

 Add distilled water to a final volume of       1,000.00 ml 

 Autoclave before used. 
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APPENDIX C 

Reagents for DNA electrophoresis and staining solution 
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Reagents for DNA electrophoresis and staining solution 

1. 10X TBE (Tris/Borate/EDTA) buffer 

Trisma base                107.80  g 

Boric acid       55.00  g 

0.5 M EDTA, pH 8.0      40.00  ml 

Add distilled water to a final volume of         1,000.00 ml 

Autoclave before used. 

2. 1X TBE buffer 

10xTBE buffer                 100.00 ml 

Add distilled water to a final volume of         1,000.00 ml 

3. 6X tracking buffer 

Bromophenol blue        0.125 g 

Glycerol       30.00  ml 

20 mM Tris-HCl        2.00 ml of 1 M 

Add distilled water to a final volume of            100.00 ml 

4. Staining solution 

Distilled water               200.00  ml 

Ethidium bromide (10mg/ml)      10.00  μl 

5. 1.5 % Agarose gel 

Agarose         1.50  g 

1xTBE buffer                100.00  ml 
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