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@11530113n1 (The United States Food and Drug Administration: US-FDA) wazgnldagia
UNsTaeluAIUeIMNS 81 WaElAIENEN19 819 sodium dodecyl sulfate (SDS) way sodium
tetradecyl sulfate (STS) dwmfuruifeilyadunisiauilalasiaalilusduluulnefign
NIEAUAIBNITANAITAARIIAIRIUTEIANUTEaurtine1ag 1aun sodium octyl sulfate
(SOS) sodium dodecyl sulfate (SDS) a e sodium tetradecyl sulfate (STS) %Qﬁqmi
lassadraaiindneiu uslinuenvesaedafawazimidnluanaunnseiu ieduszuy
dsiazlanUaeeinasniiu Felagnaa1unsentay wayrldnseAunsnieveunaiinnig
anuaufngedne 1wy uralugthelsaumanu Wudu 91nnsfinun3de wud ansanusafiai
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fausl 14 w1l fa 144 9ilue Juedivviauazanuiduduresansanu sty sennuseqay
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aelunan 14- 30 uit wenanil lelaswanvugulinnmsiiuasanusafiarlssinnysey
aulsazydaNnututuaiee dulauifuanansiudnme laenuin lalasaallusdunu
sUenIsiiu STS ianududu 0.09% Tdndiulaseasiundl B-sheet genign vinlnddns
nsgevaaetign uwaviletlalaseadindluussgmesaiu wuii lelaswagnsiaunse
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wIsuaTarany bW lusdulny anluw
Inomovusiniesinlsad

L@%ﬁumiazmumsa@Lmﬁdﬁwjﬁ@ﬂszﬁ;au laun
Sodium octyl sulfate (SOS), Sodium dodecyl sulfate
(SDS), Sodium tetradecyl sulfate (STS) laglt
81382878 HEPES buffer, pH 7.4 1duaaviazans

v

m'%zjuvl,aImLaaVLWImﬁuvlmvlwﬂﬁgnﬂi:@:fuéfwmilﬁu
mia@lLLidadﬁ’JﬁizLﬂﬂﬁitﬁgaU LLazﬁuﬁqm%Qﬁ 37 °C

ﬂi:m'ﬂﬂsxqauz SOS, SDS,
STS
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. i . - dnsany
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- mMIazans
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Wadla SEM, Anuadal284laaNan11zdaed3ame o
e a - o . AIRUTELAN
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1. mMsmseuansazanglnlusdulug (FaulasunainiSues Kim UJ et al, 2005) wuadu 2
g loun

1.1 memanes3du Inensdusiluu 40 ¢ luansavanslafounasusiun (Na,Cos)
ity 002 M Junan 20 wiit wdihSlwdiduudundduiusimannlossy

(Deionized water) 4-5 A39 LNOMAASTULALE1TALA8IULAUABSUBIUA YNANUTUNDU

P
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F199ug1dn 1 seu Andudndulninlaluraauwie fagun 2

msfaanilna LR AN WA IARS

aanNa NI na myfaana b

Lﬁuvl%uﬁﬁnslﬁyj

SUl 2 dumeumstndawiiusenainisl

12 mswieuansazangllusdulvy Tnomsanduluisnuduneusdaesdulss
We uwiavatedulviluaisazanefidiealuslud (LBD anududy 9.3 M figdnsdu
iy 4 ¢ soUiinesansaraeAidfienluslud 12 ml figaumgd 60 °C Wunan 4 4l
éfqgﬂﬁ 3.3 udrsnhansazangllusdulmildulaeyladludisaanlesswduna 3 fu
Tnpdunsniasuindine 20, 40, 60 wit ntuddsuiiiuas 3 A Lﬁ'aéuegm%”’umu
TnegladlrihansazaelWlusdulrusnduniedinuEisey 9000 seuround, QauuQil 4
°C Wuman 20 Wil emdeacludeu anududuvesansazanglnlussuluuananse
fuaalldlaonisihansazanglilusdulufinsrudmnlusunis wasd g

arsazaelilusdunwseulaasinnutuduussunn 5-6%lagunniin
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2. NMIATLULALIATIZAATAALIIRIHIUTTIANUSEaU

WisNaIsazaty HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid)
buffer At 20 mM Tuthusienuseq (pH 7.4) Mniundsuasanussiinyszqay
3 9fia lauwA Sodium octyl sulfate (SOS), Sodium dodecyl sulfate (SDS), Sodium
tetradecyl sulfate (STS) luansazvane HEPES buffer (pH 7.4) finnududilaedmiine
A9

2.1 M5ATIERIIAMITNTUINga (critical micelle concentration: CMC)
YOIETANUTIAIRIUTEINUTERAU

wisnasanwssRafirududusie luansasans HEPES buffer (pH 7.4)
Mntuhlummududiuings (critical micelle concentration: CMC) Ssfioaauidudui
topfianivilviAnluwad :nmsiansiasuilasinmsganauuasuesansazaiose
WAlA spectrophotometer fiaue1ipdy 250 nm

2.2 NM52LATITNNAANSLYAT (Zeta potential) VBIE15aALITIRIRIUTZLAN

Uszqau

6 1

WATITRAFN YAV IA1TaALTIFIR Tluansazate HEPES buffer (pH 7.4)

gaunnil 37°C fa81n304 Zeta sizer Wneldimadla Laser Doppler Electrophoresis (LDE)

g a 4 a = = a
3. ﬂ’ﬁ“U‘L!g‘U wazAaszianUanienienn wiluazdinnveslalasaalwlusdulvu

ranasazanglnlusdulnuivansanussisinuszaau ldanududuanvievesin

Tusdulng 2 % neumin wagANUTTUAATINEYDIANTANLIIAIET 0.03-0.45 % Lng

a

wwitln uazunigamnil 37 °C pH 7.4 funanginssuuasmszegiiainisiinalnlusty

U

Inylngdienisianisiasuwdasiinisganiuuassigmaiin spectrophotometer ATy

g120aU 550 nm (Tann 2 widl Wuan 120 wid)

3.1 nMsaszilaseadanil vaslalasalnlusduluudaewaiia Fourier
Transform infrared (FTIR) spectroscopy

Anwlassadrmaaiiveddalasealnlivsdulng - Tnethlelaswalilusdulmudlen
runszUIumMsYusuuEenuds  anduthunusldasdeauasaansulnumadeuTuslus

(KB wimdswnundavughilusioguuiadn  (diso) dilvimsgisnemaiin  Fourier



transform infrared spectroscopy (FT-IR, Spectrum GX, Perkin Elmer, UK) aaglun Mid-
Infrared (IR) spectroscopy AMazden 4 cm? fiauenpdulugae 500-4000 nm e
nsraeuiliduiivdfinadnvasiangvedillusdulm  venniihdeyadaseuen
AAL 1577-1725 nm 7ilduvi Fourier self-deconvolution (FSD) wazn1s¥i1 Curve-fitting
WellnneiosduszneunazUiinasedlassaimisgiveslelnsiaalnlusdul

3.2 mynsilassainedugiuvaslalasaalnlusdulvuudiswaiia Scanning
electron microscope (SEM)

Baszilassaiidugiuvedalasaalilusdulnaluiudarniendesganssal
AANTIULUUADINTIA (Scanning Electron Microscope; SEM, JSM-5410LV, JEOL Ltd,
Japan) uagtuiinamil Mdsets 100 wih Wiegdnuuriuinneluuaznisuen warainiu
thamdilduiiesgingnsuedelngldlusunsy image J

3.3 mylnszidnsuiiliazaieni (gel fraction) vadlalasiaalwlusuluy

AnTzidndiunliazaiein (gel fraction) vadlalasaalnlusdulu lnvurlalasiaa
InsudminGusunudluinUnanyUsyy eamgdl 37 °C dunednuaylalasiaauas
v

Aeszsininivngluveslalasaisunuinrinveslalasiaasudunaunisuy

3.4 As1zvansINIsdasaaten1tanmvaslalasaalnlusdulunluansazane
oulwillushtaa (protease) NaN1223109 90

Ansesnsnistesaatensiinmuedlalasiaaiianesiassiisnie Taenisuy
lelnswaiinsruminEudu luasazanaievlesiusion (protease) Anuidudu 3 unit/mt
flgaumndl 37 °C pH 5.5 Tnsansazaneteulesiazgnivdeunng 2 Yuiilednuifanssuves
wulminaenszeznamsine anturhnsiiulslseaiitasnaiiiundruas e
dhmihaande

3.5 Anwanuluivvadlalasalnlusduluniuasividany (L929 mouse

fibroblasts) TuszduiasufuRn1snuuInsgIu 1ISO10993 Part 5

Anwanuduiivvedlalasealwlusdulvuiueadiondmy - (L929  mouse
fibroblasts) TuszauviesUffufnisauannsgiu 15010993 Part 5 leeisveeey (Indirect
method) n1sneassuuadu 2 daulngq loun

a (%
- M3wssuansainanlalasiaa
Buanmawssulalasialnlusduluuiiusaainie  (Sterilization) fen1InTO9

§ Aa 1

asavangluslusdulunuasansaralsnauvosdsanLIaRRILazADI AN UK WE BN TN

Y

910 cellulose acetate %38 plastic polymer 71l YUAVDITTINTBIAG 0.22 - 0.45 pm
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%ﬂﬁ?ﬂ?ﬁﬂﬂia\iﬂia Q‘LWI%‘ET ﬁumﬂiwumﬂiulm mﬂuummia“mEmﬂsflmfmwasumu an

fusulalaseallusdulnafianzvaende  hlalnswaildludluomnsdeasadeio

a

Dulbecco's Modified Eagle Mediurn (DMEM) 7ilaifigsudussdusenou Umﬁqmmu 37 °C
Hunan 20l agldiasatmannlelasiealnlusdulus 100% TeaggminluiFeansie
oMo neasiliidsuduesiusenou Wislildansataiinnududusieg

- manageuAMuuivAswadimlmy (L929 mouse fibroblasts)

Fmsinzidsnead 1929 Tuamumzidsasad 24 wellplate Tnawnzsidouyad
Busufieumuutu 5 x 10° cell/1.9 cm? fsemadsasadein DMEM 7idsu 10%
Tngtnas vlugmsdeiiannzanuduusssniadid CO, 5 %wlasu3ums gumndl 37 °C
WHunan 24 $alus dieliwaddmnizuaswisufunuuduiion (Monolayer) vuaumwizide
MntugroINsABITadeenianuiie e satnnlalanaalilusduluuiieududy
Giw]aalﬂlul,wiawqm wneides wastumuannsdsiudunadn 20 dalus andhshnng

Uszilludnniuwaandadldinegaieimnaila (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl

tetrazolium bromide) (MTT assay) (Mosmann T.,1983)

4. @nwanuaiuisalunisazangveanasn uium'iaﬂmemﬂiumwﬂsuaau

ﬂmsnmmmmaﬂumiaumwaqma piuluansanussdsinusznvUszgaud
ALY 0.06-0.90 % lawintin ﬁiﬁﬁt‘f]uﬁaﬁ'lazmﬂ Tngnisuiaesalin 1 mg unavany
luasanussRamausuIms 1 ml waguuy 37 °C, aa3a5eu 200 rpm Wuan 24 Falua
~ v s a a 1Y ‘NI S o Al Y 5 y =
ialiaeialiuinnsazatelauiniige nduthatsazaenlaluitiasosdunniesans

a |

A5I50U 9000 rpm Wunan 5 wil wazifumesaiudiuiinnazneu (Wazaneluaisan

=3

[
o

wseAein) Ieuurislugoun 40 °C auuvivaiiv uasdaiminiinande udriluinavesnain

& a ]

uwinnesaiusumuiieruiminveanesalivdunavasluasanusafieily  wae

Y

ANULtuINgavennesaiiuiazanglaluasanusafaian L dudun1eg

5. M3vugUuazAnwaudanisdinmeeslalasalnlusdulvunussyiaesaiiy

a a

yMnswanansazae lusduiuaisazatunasaliuiazatsluasanuLsImanIUs LN

Y

Uszqauitmnuidudusineg uazusiianmgdl 37°C, pH 5.5 azldlalasealwlusdulmiussg

a

\masAIU



5.1 Anwrdnuaznalnnsuanudasinesaivainlalasiaalvlusdulvaly
arsavaneouledlUsiios (protease) fian1nzsnansfioni

ihlslasvalilusdulviiussgresaiuinudluamsazareveamatime sdioulsd
TWsfiied (protease) AUty 1 unit/ml luanmsiiansazaefildsessuiviunsuinni

10 wihvesdsussildluniswisuaisazaledusivesaisoongns 15un31 sink condition

a a

nduilUunngumgi 37 °C, pH 5.5  uaziivdiuvesasazatefivianing luineinis

Y

a A

a d' = A a ¢ a s !
@j@ﬂaULLﬁQWQUWNST}ﬂau 430 nm WA IENIMUIUIUVDULARTANUNONUaAUABREDBNUN

Y Y

nlalasealilusduluy wagAwiumsesavnisuanldesasanvenaasaiiu (C) 1nans

Ci = Zt:(Mi)

Jagaznslaalsasseay = ax 100

ol

lng M; AoUsunaunespiuignUandesanlalasiaalnlusdulvuiaaaa i

C Favsunaveamesaiuignuantaesanlalasaalilusdulniluusdazdiaam

(% '
a (Y =

C, AoUsunvadnesaliunmuniiussyeglulalasaalvlusdulyy

Y
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5.2 fnwuszansnmesaneialiv Nuanvaesaintalasalnlusdulvu lunis

s v

20NONEULINITONAULALNITAUNTMNEVDIUNATUNYNAGDY

5.2.1 dndnaaas vumaass BALB/cMlac mice g Wwitn 20-25 ¢ naud

v & a

dninaaeauniend uninedesiing (NLAC-MU) Taeldesluszuuny 1 msenss gamgil

Y

[ '
o a

25+3 °C T%011115az MU 1ANNT0RaAEa1 NMVUALLT9Na197U azNa1sAue19ay

[
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12 falus MaivynaaesiiiunAnwiderauniiunseydAiueuaInaneNIsuNg
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5.2.2 M1svAABwinuRa vhnsaisunauunday Tneduannmsanas sodium
pentobarbital ALty 55 me setming 1 ke dendenUszamn wazTn1IESILAE
suﬁquglﬁaﬁy’q%uﬁmﬁq (full-thickness wound) 311U 2 UNA YUIA 0.6x0.6 cm? UUNA
VRInYUsaza (YAOJIONG WU et al) wagyimssnuimiengunisvaasdsingg aauansly

WHUNTNAREY JUTI 4



(] 3 7 W 14 %

BUFTIILIAUNE WUHALALIATIZH INUNALRZIATIEH LLHALALIATIZH
WALYINMTINBN - YU ALHE - YUK - YUIALNE
IENFUMINARBI - FIUINLTARATEL - FIWIULTRRONLEL - FIWIULTRRONLEL
@9 - mia%ﬁamaﬁirl,ﬁaqﬁa - mm%amaﬁl,ﬁayﬁa - miaﬁamaﬁﬁﬁaqm

JUN 4 ununmmeaen1sinvunalunymaaes

5.2.3 NMIUUINGUA20EN9 mmaaqaamﬁu 4 nqu laun
oAl A & M Y o [
nquit 1 nyduusauagldlavinnissnn
A A & a, v a = [~ a [ ¢ af Yo
nQuy 2 vﬁé‘wLUuLLmaLLazUmmmLmamal%lmuwamLﬂumamm%ﬂﬁuaﬂw%ma
Tumanisunng
oA P a P a A Moy & a
nauit 3 nyduukanazlauinunaniglalasaalilustulunlilaussyaesaiiu
nawdl 4 vyiiluuna waslauiaunadmelalasealnlusduluiivssgaesaiv
5.2.4 N1SASIAIATITUNANITSNE
- Wound closure unisussiiiuvuinvassianiandsvinnissne Tnaaraninly
Ui 0, 3, 7 uag 14 LardinsznuuInvetlkaniglusunsy Image Pro Plus 6.1 LagA1uIu

P15088LVDIVUINVDILNANUANAIVIINITTNEN NGNS

SapazvasIuavadLeanila
PUNAUDILHAAOUSNIE —  ABIGUDILEARRISNHN

= x 100

YUIAVDIUH AT DU

- Siseisuumadsnauiitunuinadeeuna Tnevmsiiuiuieuinm
wrauaziieetamsdduiud 0, 3, 7 uag 14 wudluasazanevodaniles ety
10% Tnevhwein Wunan 24 $lus fanazadeuums iy eudideidofednsomaia
Hernatoxylin and Eosin Staining (H&E stain) uaglnszsisiuineadsniauiidnunudi
doideunasendonansmiuazlusunsa Image Pro Plus 6.1

- 3miwﬁﬂ'ﬁa§wlﬁuaél€jaqﬁa (Re-ephithelization) FeauenfensanIuYeILKA
nilaBesetsiAuluiud 7 uay 14 wardendnemaiia HAE 1su dronmenendasa
wosle wardinszsinindelusunsy Image Pro Plus 6.1 iefuiumsssaznsadiaead
HeyRvdninsinw 91ngns

'52:52:“HE]5L%R§L§81_‘!N'9

=h
=)
5
o
=

%ﬂﬂa:nﬁaﬁwmaﬁﬁaqﬁ’a =
TTHTVOILHA
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6. MINATIEINNATA
deyailiumaadsuavandeauunnggIu MNUULATIERANUANINEDR

Tn&3% ANOVA Tiszsuauidiosiu 95% (p-value < 0.05)

NEN1INMNEB

nuAteatiumataunlslnsnalilusbulmnefignnsedusensfuansanussis
Auszandsyaavviineie lneldinisAnydnsnavesansanusaialiaussinndsegausile
el n sodium octyl sulfate (SOS) sodium dodecyl sulfate (SDS) Wa g sodium
tetradecyl sulfate (STS) siangAnssunNIsAnaa laseastamiuall kazauifinianienInees
lelasalilusdulmilneifiolfiAinanudlalunalnninifnading1n a1sanusadeiia
Ussuamuszqauia 3 wliafideonuAnuilusuiignslanadaaiindodu uifieusnves
aedaRauazimiinluanauansaty duandlumsied 1 505 fwungdaRauazimiin

luanadesnign Aowiiu 7 vy uay 232.27 ¢/mol muA3e SDS NI WIUNYEaAa 11 ny

1%
o CY

wagdlwinluana 288.38 ¢/mol uay STS NilTwIUnYdafanazminluianauinyian Ae

WinU 13 3] wag 316.43 ¢/mol AU

a9l 1 lassaaailuazanaluanavesasanussfaiiUssnmuszgau sodium octyl
sulfate (SOS) sodium dodecyl sulfate (SDS) wag sodium tetradecyl sulfate (STS)
(https://digital.lib.washington.edu/researchworks/handle/1773/24169)

SOS SDS STS
Tassadaail 0 0 o
CHg(CHZ)GCHZO—?)—ONa CHa(CHg)WCHgo—&sI)—ONa CH3(0H2)120H2—0~§—0Na
gasiall C,,H,;NaSO, C1,H,sNasSO, Cy4HpNaSO,
J1UUVD9 CH, 7 11 13
wqalaana (g/mol) 232.27 288.38 316.43

Talasalilusdulnulnefwauidulunddel azanirluussendldiduszuutings

Y q

a A

wazaugun1sUanUaeairespiiuiieldidunaninszdunismevesuna 33levinnisfinw
antivnnsdininvedlalasiaa loun Snsnisdesaaienistanin aruluiiviawadluszau
WoaUURN1TmINNIASEIN 1ISO10993 Part 5 Uszdniainlunisaivaunisianddesines
afiunlelasnauazlszansnnlunseangquidudinissniauuaznssfunismevesunaly

MNP



1 auURva9A1TaALIRIRIUTTIANYSERaUBianIee)

1.1 AnUduduIngm (critical micelle concentration: CMC) 89615aAL59R4

NUsEnUszauliamnge

anandutuinga (critical micelle concentration: CMC) uniiuansfispuidudu
fouiigaiviliarsanussiefindadosinduleaddloszatsegluti Sndunmuandad
Fumzresansanusafisiaudasiln MaiiunieanUIuuUesaITanuTIAiia ardinane
auTRussRaiavesans aunsasmievzaenininu o wesansanussisiafiuatsd ugld
T,masﬁuﬁuqmmﬁLLassuﬁmaqmiamLiqﬁaﬁa (Ji Hun P. et al, 2014) A153LA189N1AIY
\Wudwingm (critical micelle concentration: CMC) UB3a15aALSIRIHIUTENNUTERAY SOS
SDS way STS fazarglufavinazats 2 viinde v1usidainlossu (pH 6) uazasazane
Unine$ HEPES (pH 7.4) VT’]I@EJﬂ’]iil(ﬂﬂ’]iLU?ﬂIEJ‘LJLLU@GﬁWﬂWiQ@ﬂ%ULLﬂQﬁ’JBLVlﬂ‘ljﬂ
spectrophotometer 7iA1ue13ARY 200 U luLLnS gaunqil 37°C Wemanududureans
anusfsiUszInnUszgaulviAnsgandunasgean Jsuansdaraanduduings (CMO)
suaﬂemamLLiqﬁqﬂanzmmUizﬁ;awﬁmﬁ?w] (T F. Tadros, 2005) fan il 1 wan15iaszs
wuin STS Gefianelddafanniian axdimnududuingeiiosiian Wity 0.065% st
fnunfie SDS way SOS fifaelddanaduas Tarududuingavinfu 0.25% way 3% lne
ihwiin puddu Fuansunsed 2 dufte STS aunsadansidessudulugedldiau
dudushingt sDS wag SOS AeuduuAngaTesasaRLsRRIUTEAUTEgaUT 3 wiln
uananisdenuin sdavessrazatefidnaiu Lufinansenusa AU UTWINGATDIA1TAN
Lmﬁﬂﬂaﬂszmm'ﬁz@auﬁy’ammﬁﬂ Nd19A8 AULTLTUINGAVDIAITANLIIAIRIUTELAN
ﬂizﬁ;auﬁazmﬂluﬁﬂﬂi’mmﬂlaaau (pH 6) wazazargluansazareiwines HEPES (pH 7.4)
fanlaiunnenaiy Ssaenndestunguiiit Jedefidmadensiiutuvioanaseseuidudy
Inqrussarsanussisiiyszinnilusey Aoarusnvesaelddarandediudiliveuih
(hydrophobic domain) mnarseaaelddafainty svdwalinnududuingnanas

Tunenduiu Anudutiingnuetansanussfaliiussnnliivsey Yusgiuusunavesdud

U
< v

gauLn (hydrophilic domain) &nd@ruiireutiianas ALINTUINgRNzanaInle (T.F.
Tadros, 2005) kaga1mniUseuiisuanulutuingauesansantssisiiussinniusequas
Lifusey enud arsanusedaiusenvlifivssgasianmnududuingatosnitansanus
AaRaUsTLANIUTEy Lﬁaqmﬂmﬂ'?\luaa (phenyl group) Favdudauitldseuii (hydrophobic
domain) Te3asaRLIIReRUEIAITUTEY asRuauantRliveut (hydrophobicity)
Tiduluanalddnindedisuivaisledafavesarsanusefsin szinnilusygiidsiuau

ATSUBUINAY (T.F. Tadros, 2015)
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@)

0.8

0.6

ATNIIANAWUEY

0.4

0.2

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09

ANNLTNTwY STS (%lasiInin)

AA 1 AINSAANGULEIYDIANTAALTIRIRIUTELANUTERaUTTIAi99 n) SOS ) SDS @) STS

flavanglutihusaainlessu (=D, pH 6 ) uazazangluaisazanetinines (—e— HEPES,

pH 7.4) AU ULTUa1ge AATIZREmATLA spectrophotometer M1A1NE1IAAY 200 W

luluns gaumail 37 °C

A13199 2 ANULTEINgERAEAANANYREN TR RNEHIUTEIVUTERA U AN 7

azagluthusiaanlessu (DI, pH 6) wavazaneluansazareinines HEPES (pH 7.4)

SOS SDS STS
ANMUdutUIngn (% laeuwnin) luaavinazaney
y 3 0.25 0.065
WU nteay, pH 6
ANUNTUINgR (% Taeuwnin) TuAvinazane
o . 3 0.25 0.065
Unwas HEPES , pH 7.4
Zeta potential (mv) -23.43 + 289 | -52.36 £ 0.72 | -68.00 = 7.14

1.2 AnAndiadn (zeta potential) vasaNTaALTIRIRITEANUTZRAUBTAAIN

[y

YY)

(stern potential) Audngluililutuaisavarevsedndluinuiuiiveteynia damndnd

ndLwA (Zeta Potential: ) An muasdngszninedngluiruinuiuidianesu

4

wendlanduuan Mazuansitansazatersoiuitoyniaiuszgsuduuin wazdndwdniian




I [ 1 G dy a a I3 o aa 1 o 6 4 v 1
Juau Msuansinansazatevsenuiteynialivszysiuluau Jedeniinadedndisdn laun
Arpnadunsa-tua (pH), A1n1sdlndia (conductivity) U@y (Robert J. Hunter, 2013)

1 U 4 U

‘\]’]ﬂ&laﬂ’lﬁLﬂiwﬁﬂ’]ﬁﬂ’aL“IJG]’]“UENE#’]?@@LLiﬁaﬂa’JUizLﬂV}UizﬂaUﬁzﬂ 3 ila wuIN STS uana
Adndisiduaugeiian whiu -68 mv Tuvaeil SDS wag SOS Smdndiasiduautiosnin
Aoy -52.36 uay -23.43 mV amdiy fauandunsied 2 Wefinnsanlassadamani
vosasanusIRaiIUsEIUszRauTaueia wuimdndwiniunlduiivs uauuniy
donuenvesaslddafavestuianaifiudu (Bengt K et al, 2014) I SOS dandndiudn

o w d{l a a

WeenI1 SDS uay STS egelldeddny 1He39n SOS Anydadaiiies 7 vy Tuvaed SDS uag

Y

a [

STS dvydafadnuiu 11 way 13 vy MU (1191991 1) ArAndiesnves SDS uag STS Ll

Y

°o o =

1 1 a o T a U o Y A Y
ANULANATNDYNUULHINLY LUBIINNIBAAATDY SDS ffu STS d91uaulnalAeenu

2 ndwavasaNudutuvasasanutssReiilssinUszgau uazasazanglnlusduluy
nesaszaziiainisiiaaalnlussulvine
Q’lj < = 1 v v = a

n1sneassililunisfinegieniududuresalsanussfisiaussinniszgavnay
arsazarelwlusduluulne (SF) Mmunzausenisiinaallusdulvlvne Ieedenly STS Wu
AILNUYBIATANRSIREIUTEIANUSEaudn 2 9ila szeziiainsiinealilusduluilnes
TAsERNMsinnsiUdsuudaiainisganfuuassiemalin spectrophotometer Ay
g17AAU 550 UITULLAS A15199 3 warsszeziainsieaallusdulnulne Wenauansy

anellusdulunulne (SF) anududu 0.5, 1, 1.5, 2% laginin duaisavaie STS Ay

W 0.01, 0.03, 0.04, 0.06% agiiinin LLazﬂuﬁqquﬁ 37°C lng@nnnunanielu
SeewLIan 120 U9 WU izsmmﬂmﬁ@LaaIWIUiﬁuiwlwS%uagjﬁ’uﬁy’ammL#’J’ﬁ,ﬁwumﬁa
a1savanelnlusdulunlne war STS Tnanuin arsavarslnlusduluulneanuisudu 0.5%
Tnetwiin Wenaufuaisazats STS fimnududu 0.01, 0.03, 0.04, 0.06% Iaetiwiin lal
Aaanieluszozinan 120 wiiifidnen dedinenududuvesaisazanslnlusdululne
Ju 1, 1.5, 2% Taetwiin waznaufuaisazaty STS Arudaudu 0.03, 0.04 waz 0.06%
Tnpthwin anunsafnealdniglunan 25-90 und uenand Jsdanaiunnuuansiiwos
Snwazibenadildanmsinsuasazanglnlusdulalnedinnududuunneneiy Tnewuii
wawssunaeazanglwlussulnilneanududu 0.5 way 1% Tagtdmidn ssidnwaylyl
A3y Selimunzauitasiluiauise Tusud 3edenlwlusdulwalneanududy 1.5 was
20% Taetmeinlunauiuansazans STS Arnududulutiafiniredu léun 0.01, 0.03, 0.04,
0.06, 0.07, 0.09, 0.10, 0.12% el ilefnuiszaznaasngRnsunsnsziunsin
wariudiy fuandlunnsieit 4 arsazanglilusdulnilneanududu 1.5% Tastmdnile

NaNfUaA15aLane STS ALY 0.03-0.12% laeuinin @1u1saLineabetueian 20-95



unft arsazans STS finmududiu 0.09-0.10% Taethwiin ansansedunmsaidaralilusdy
Tvailneléifaiian nelu 20 il erfimenudiduansazanelnlusdulmilnedu 2% lag
i wagnaufuatsazats STS mandudu 0.04-0.12% Tasthuiin wuirezfaiaald
aelunan 25-40 unii waziinialiftganiglu 25 nidenaufuaisazaty STS finy
Futu 0.07-0.09% Taetiwidn 91naan1sAnwIvesnMAaesinuIngsedutuves

a1sazany STS lunsnsedunmsiinalilusdulalne IndlAesiudisannudutuves SDS

'
a ¥ a

Anszaunsisaatilusduluy (1-33 mM) AsreaulunisAneIdeees X. Wu kazane Tu

9

Y 2012

¥
a v A

AaiuanAdeldsaulanagfinvinansenuresnnuenaedana Ussuaranududy
YBIHTANLIIARIUTELANUTERaU 3 Wila lan SOS, SDS uay STS feossesiialuasnaln
nsiaalnlusdulnilve lagldvinmsfnulassasiomani wazaudfiniameninveslalag

walnlusdulmlveiieatvayuaudilalunalnmsiinmaliunng s



A1519% 3 szeziainsiaalilusdulrilne Wenavaszanglwlusduluulne (SF) anw
WUty 0.5, 1, 1.5, 2% legtmiln fduansazaigansanussialiiussinnyseqauin STS

AL 0.01, 0.03, 0.04, 0.06% laetiwiin TneRnwingluszesnan 120 w7

aaumnil 37 °C, pH 7.4

AMMTNTY SF | Adududy | szeziaainisiiaig
(lagiain) | STS (%lae (Wil)
Yiwtin)
- N/A
0.01% N/A
0.05% 0.03% N/A
0.04% N/A
0.06% N/A
- N/A
0.01% N/A
1% 0.03% 55
0.04% 35
0.06% 30
- N/A
0.01% N/A
1.5% 0.03% 90
0.04% 60
0.06% 25
- N/A
0.01% N/A
2% 0.03% N/A
0.04% 75
0.06% 30

*N/A = Lﬁmaavl,&iaummﬁlmwznm 120 w171



AN519% 4 szezainsiaalilusdulmlne Wenavaiszanglwlusdulvulne (SF) anw

Nty 1.5 wae 2% lagimitn duansaraivansanusafaliiussinvusegausiia STS A3

it 0.01-0.12% Taeniniin Tae@nwineluszoziaa 120 unil figamgil 37 °C, pH 7.4

Aanududu SF | audiudu STS | szeziainisiia
(lagtutin) | (6lastniin) 18 (Ui

- N/A

0.01% N/A

0.03% 95

0.04% 50

1.5% 0.06% 25
0.07% 25

0.09% 20

0.10% 20

0.12% 30

- N/A

0.01% N/A

0.03% N/A

0.04% 40

2% 0.06% 30
0.07% 25

0.09% 25

0.10% 30

0.12% 40

“N/A = fianea lanysalluszoziian 120 wafl



3 INSWAVRITLALAZAMUTNTUVDIAITAALIINIRIUTTANUTERAU ADTzIAILAE
nalnnisiinealnlusdulvalne e gaumgll 37 °C, pH 7.4

Tunsnaaei Iiinsdnvidninavewinuazanuidudureasanuseian
Uszianuszaau SOS SDS wag STS Aesveziiatuaznalnnisiiaealilusdulvylned
gavgil 37°C, pH 7.4 Tagdasevszozinainisinlaaainnisianisasuulasiinig
annduuasdaemaia spectrophotometer inme19AAY 550 wIluiAs Wud1 AINNS

Y

pandunaesansazarglulusdulnulnenngasiiin SDS wag STS ﬁaamﬂuqﬁmﬁanm
nuly denalinsniiladsnuasdutu sunseiede s namileq AINTIAANAULAITILADY
Asil Fanndl 2 nsifiuduresrinisgandunacd uansliiiuddauguiliiiniude
ansazanglnlusdulvlnewdeuudasluiduma ssoznainisifneaansaiinsesildan
N15111A7 half-maximum value GuaqmsuﬂﬁauLLUaﬂﬁi’]mi@JmﬂﬁuLLm Fauanaualunsad 5
NHANSNIAABINUT SDS uay STS finrundudu 0.09-0.45% Tastwiinanunsanseduns
Aovallusdulnilneldnielurasaan 14-42 und luvaedt SOS Maan 113-144 Falusly
nsnsefumaiaealilusdululve seznaimafaeatuegiusiiauazaududures

#138ALIFIRIUTELANYSERaU WeRaTNTilnvedanTanusIReill lassasneluianavedans

'
a =

anusIivnUszLAnUszgauia 3 slaumanansiufinnuenivesaslgdada Jadudiuliveu

wwesluiana (hydrophobic domain) #eazidunialutladenidvinaneszeziiainisiaa

a

InTusBulilng Tnsnwudr SOS eflarmenvesaslssafaduiign Tnalunisnsgdunis
Aataalnlusdulnalneuiundt SDS uag STS Falarmenvesasladadasiinitfianny
uduintu Fsanunsaesuieiiudiliitanuenuesanglisafavesansanussisiaussnm
Uszgauiinansznusienainea mnzidududdyitiednilfiinsunsisevesdiuilsl
58Ut (hydrophobic interaction) sgndnaluianaveshilusdulvudioduies iiu
NSEUIUNTANNeeN (dehydration) (Ji Hun P., 2012) SnvisaneTddanavosansaniI e
Uizmmﬂﬁzqa‘uéTammsaﬁa3Lﬁmé’umiﬁ%awaﬂdauﬁlmauﬁw (hydrophobic interaction)
fuluanavesilusduluuladneaeg (X. Wu et al, 2012)
definnsannansgnuvesnnuituturesansanussisinyssianysyqau wui1 SDS 1
aadutu 0.15% Tnetdwiin nszdumainmalilusdulvinelfisfialuna 14 und
uay STS fierundudu 0.09% Tasthwidn nsedumsifaealilusdulvlvelfisfaeluna
20 wft Tuvauedt SDS wae STS Anundudugeluazarasnsifaaalilusdulmilne i
Em]Lﬁ'mmmﬂmﬂﬁmmmL%MﬁﬁumaqmiamLLiqﬁqaaﬂizmwﬂizan %lmﬁw'%mmﬂszag
avlvdlinniiulvauiausaudnnialnid (repulsive force) seninalaianalszaavvadinly
soulnulveduluanadseauvesansanusafisin iliveaanisiinavesinlusdulmula (X,

Wu et al, 2012)
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a1 (W)

AWl 2 AnsgandunasvesansranszriansazangllusBulmilneanandudu 2% log
13114‘13?1LLazmiamLLiqﬁaﬁmssmeiz'gaU n) SDS %) STS TuansazareUuines HEPES (pH
7.4) faududusingg (—0%,— 0.03, =0.09,= 0.15,= 0.21, — 0.27, = 0.33,= 0.39, =
0.45) Aimsghseinainspectrophotometer finaueAdY 550 cm'® gaun il 37°C lu

SrgzIan 120 W



A1519% 5 szezainsiaalilusdulyulve Wenavasazanglwlusduluulne (SF) au

LWUTY 2% g niln AUa1sanussRaRIlseinnysegau SOS SDS uag STS ARULNTY

a

0.03-0.045% Tneniuiin figaungfl 37°C, pH 7.4

Y

ANULdudY s szgzrIaIMaiaa (i)
_ |anudiuduaisanuss
ansazanglwlusdu | | _
AsHIUITINNUTEYaU
Tuwlne _
¥ (% Tagiwiin) SOS* SDS** | ST
(SF, % laguniin)
0.03% ~144 %3 N/AF** N/A***
0.09% ~135 % 42 20
0.15% ~128 %1 14 30
2% 0.21% ~127 18 28
0.27% ~113 %y 18 24
0.33% ~119 ¥y 20 30
0.39% ~119 ¥y 20 30
0.45% ~121 ¥ 24 30

a a 6 v o U
*SOS JZULIAINITLNALIA ILATIZHEAIUNIIRILNAAILAN
**gDS, STS JeHIAINNTNALIA ANz heBINaila spectrophotometer
wxN/A = Lﬁm‘ﬂﬂi&iﬁ&liﬁiﬂﬂuiz&ltﬂﬁ’] 120 WA LUaaT A NTReENATiA

spectrophotometer

4. dnwazmanennuaslaseairsdugiuvedlalasoalilusdulvalneiivSeuainans
naNszrINasazatelwlusduludlnenuaisaausefsdaussinnuszgauviingng
Snwazmanisamaedlelasiaalnlusdulvalneanududy 2% Tasdniindgn
n3zduMYaITanLIIRRIUTEIANYSE9aU SOS SDS wag STS Aimnuidiudu 0.03, 0.09, 0.15,
0.21, 0.27, 0.33, 0.39, 0.45% lagyvitin w grumgdl 37 C°, pH 7.4 wansdanmil 3 (n1w
nansdnuaizveslalasiaavdainnisiaa laglelnsiaalilusdulvlvefignnsedusnenisida

SDS wag STS dunaiaan 120 wiil luvaueiilalasiaalnlusulnulneignnseduaienisiay

=

SOS dunafitnatuseuna 113-144 471a9) wuiilelaswalnlussululnefilaasisnwus

1 = [

Y Y o H s ° = 1% a Y% I .
AaNYIU AU UUNTJUIAUTENBUIIUIUNIN LUDNAFDUAIUNITNG ﬂﬂaU@qu?ﬂvalle'Ma (Vial

q



test) Tu 30 w1l (Kim U.J. et al, 2004) wazdsdanalainseduainuguvalalasiaalnly
sdulnulveudazgns Iauwansiaiy YuegivsinuarainududuvodaIsanuws sy
Uszinnusegauiliag

siavey  AMdNTUYRNETanLIReRaUTEANYSERau (% lagunniin)

lolasia 003 009 015 021 027 033 039 045

SF + SOS

SF + SDS

SF + STS

awit 3 dnwaigmamenmvedlelanaalwlusduluslneanududu 2% Tasthwiiniign
n3EfuiEANTARUSIRIRIUTEIANYSEQAU SOS SDS way STS fimnuidudu 0.03, 0.09, 0.15,
0.21,0.27, 0.33, 0.39, 0.45% laguiwiin o gaumnfi 37 C°, pH 7.4
Tnssassdugrumelulalanaalnlusduluulne () arududu 2% laethmin 7
gnnsEAufILanTanuIIRIUTEIANYTERAU SDS way STS fimnududu 0.09, 0.45% Tne
hatin uansdanind 4 nud Tassadrenelulslasieaddnuasadiofunils (walllike
structure) $1ausnnuaztdonlostudulassng linuanuunniaszninsalasaaluly

seulnulnegnnszAusiua1sanusaieiiuseinnUseay SDS uag STS wAnINATUIT



ANULTNTUYDIA1TAARIIFIRIUTELANYSEauilidy wudn lelasealwlusduluulvenign

Y

N3ZAUAIBNITHN SDS wag STS Aududu 0.09% tneumin dudasey Wuilsiien

Tuvauzilelasiaalwlusdulualnefignnssdunisidu SDS uag STS Anmidudiu 0.45% lag
ihaifn Faduenududuiiinniigaildlunuided fuddddeu Badulevionznouuy
fuRmifswedlelnaien Srsdiulidafimdmens 500 wh duleviensneuiioradunann
n1sinwsanannelnila (repulsive force) seninsluanalseyavvealnlusdulvulnedy
Tuianauszqauvedansanussiaiafianututugen vililuanauisdrnvestnlusdululne
INANIRNAZNBULENDDNUT (Ung-Jin K. et al, 2004; Akira M. et al, 2006)

C. Deng wazAuz Tud 2013 lananfsanvazlassaiisdugiuveslalaswalnlusdu

a J =

lnuignnszAuaIgansanusaiaing danvaglassairegnuiniindevuinlng (macropore

wall) E‘Ui’mLﬂuLLﬂiuﬁLLUﬂaaﬂfﬂ’mﬁJu (separate lamellar structures) vurmUszunad 20-100
nm Faaaeidule extracellular matrix (ECM) Ainulugdaiidin wenainilawideves Ji Hun
P. uazaniz Tul 2012 laeSurgliin dnvaglassaiisdugiuvedlalasaalnlusduluuiign
Y = a Ao Y ] . . = a W
nsgAuMmeasanuLsIiallidnvuzaigluli (leaf-like morphologies) Lagiignuiouseriu
(interconnected pores) lngvuinvasgniuvedlalasialilusduluungnnsedudvaisan

wseRsERzdivuatnginignsuveslusdulnuniaanusssuys



AULNTUVDIETANLIIAIHIUTENNUTERAUBTAAI9Y (Yolneriwiin)
YEN
, 0.09% 0.45%
V818 (W11)

SDS STS SDS STS

30

100

00kV 12, dmrMxiiod SE

500

SU3500 5.00kV 12.3gwm x

SU3500 5.00kV 11.0mm

a i 4 lassadedugiuvestalasinlusduluilve (SP) Mwssuanasnanssnivasazanelvlusduluulng aanudutu 2% taeuinidn Auaisantsnemd

UsennUseqau SDS wag STS AUt 0.09, 0.45% lagumtn tren niidndsvenesneg Aasizilaemailia Scanning electron microscope (SEM)



5 AMANELIAT (zeta potential) vasdsuausznInsasazanslnlusdulunlneuazaisan

WIIAIHAUTENNUTERAUT LAY

=

WennUseauvesasantssisineanalinansenudenalnnisiiaalnlusdulnulne

(%
=

nudelidslaviinisAnerafndiedn (zeta potential) YasansWaNszRIATazaelwlusdU
Tnnlneanududu 2% Inguininuazransanwsifieniussinnlsegau SOS SDS wag STS ¥
ANNLLTY 0.03, 0.09, 0.15, 0.45% Iaguvitn Naauigil 37°C, pH 7.4 AALAAIHA U1

a U 6 U <

6 ansazangllusdulnulnendslilonauivansanuseisiiiussinmuseray Trdndwanu

(Y

AU INNU -2.98+0.31 MV LarBadanNNauiua15anksIeanIusennUseaauy 3 tinay

q

[
U 6 4

dealvirndndidnduavuiniu wazlirneglugiasening -4 83 -25 mv Yuegivyiauay
¥ k4 = a 1 a

ANUTNTUYRIENTaAUTIRRIUTTIANYTE R Inganskausernivansaraelilusduluulne

waz STS azuansmdndwdnduauuiniign (-9 83 -25 mV) 593a907A0 d1THANTENI

ansazarglilusduluulnewas SDS (-7 D4 -24 mV) wazalsuauszuineansazarelnlusdu

nilnewas SOS uansmdndiednduavtiesiian (~ -4 mv) muddu wagwuitlunsdves
SDS uay STS Adnduiwesansuauduavuniunueududuresasanusafainussany
Uszgavfiintu Tnsansnanszninansazarglilusdulnylnewas SDS wde STS A
it 0.15-0.45% Tastihwiin dardndisiesgeniansuaussnivansazanglnlusdul
Ineway SDS w3e STS fimanduty 0.03% Tnetvidn egrdidudidynieann wazdudiun
Junairfienuidudures SDS war STS Haemilsq Ardndivosasnaudanduaugedu
ogedaiau sndogns SDS finrundudusening 0.09-0.15% Tnetwiin Adndiedvosans
wannduaunnduann -7.9 18 -22.90 mv udu Sedrsamududuves SDS wag STS vl
Anmadsuulasendndisiuesasnauedianni AoudrdlndiAssiumeududurosans
anussRafiane 2 sliafinseduninfnealdiiafian 1399 5) wardndwivosansuand
U19zhansfedndnaveslsyaaudesvesiianlunisiiaaabilusduluulneld nanife
asaraglnlusdulvalvefinansu sDS anudiudu 0.15% lnevniin vie STS Arundudu
0.09% Tasuanin aw%LﬁuqmﬁLﬁmau61aiwdwé’umﬁ%ﬂwaadauﬁhjmu13W
(hydrophobic interaction) kagdunsnse1vasluilnain (electrostatic interaction) Anelu
Tuanavesansuay vilviasazanslilusdulvalneinaldidfian luvngidlonududy
99 SDS uay STS firgening envdwmaliivszaaunelussuuanniu uazifousssdnvos
Sunsisevedlulinadn derraonininmald uenani wanndndesnfiluauuinues STS
yiliAausamdnmalwihszrinluanaluanssamnnniinsdyes SDS fifluszaautiosnin 3

£ [

PN15:A9L9891N I DNTLAUAY SDS NAMULTUTULRSINUY WU @15aAKIIRININAINY

9

Wudu 0.33% lagdmtdn arsavarelnlusduluulnefgnnseduaie SDS 1inlaaiiaan 20

Wit Twvaue?t ansazarellusdulnalveiignnsgdusng STS WRawaiivian 30 wiil (Judu



91NU3T809 X. Wu wazame Tl 2012 lafnwiArdndiwinvesansnauseniing
arsavangllusdulvmanududy 4% lasthaiin waransanussfsinyssinndszaausin
SDS AUty 2-24 mM wud Andienivetansazatenanluyieniuituduues SDS
511919 2-12 mM Sleneglutas -1.53 fis -1.43 mV uaziileiiuanududuans sps Whnandy
12 mM dndieivesansnanaziduauuinduededaay Tuiigadsusdadundu
(turning point) ¥833zuv Fadugeivirliluananiegluveslusduinnisussadnmalwii

P FanuNAMUtuduYe SDS gendnd msiaalilusduluuazdias Feaenndesiunad

a

wulunuddell Anudndaiiunnutudureansantssililsenndseaulnunniiuniige
MinaunasEnIedunsisevesdlunliveun (hydrophobic interaction) wagdunsnzen
vaslnfinadin (electrostatic interaction) n1eluluianavesaisuay vegnilinaaisingn

Usaauiiiuunniy anunsoseanseeeiaInisiinaale

AN519% 6 ANFNSAIYasaANSNaNSEIasazanllusdulvulne (SF) anududu 2% lae

UmtinuazansanuksaReiauszanUsegau SOS SDS wag STS AUty 0.03, 0.09, 0.15,

a

0.45% Tngthmiin figauvindl 37°C, pH 7.4

U

arszanell  wilevesansan aaduturesansanusaaintsznnUszaay (% taetmin)
TusBulny  ussdsiUsean 0 0.03 0.09 0.15 0.45
e (SF) Uszqau
SOS -4.71+0.39  -4.89+0.32 -4.92+0.06 -4.61+0.30
2% SDS -2.98+0.31  -7.56+£0.76  -7.90+1.13  -22.90+7.65* -24.93+1.10*
STS -9.54+0.63  -18.13+7.38  -24.40+3.24* -25.20+1.73*

o

(* = ANUUANENDENARUFIATY NITAUAINNDTENY 95%, p<0.05)

a a

6 1ns9a319mAEndl (secondary structure) vaslalasaalnlusdulunlneniouannans

9 Y

nausgndinansaranglnlusdulnulneduasanusefsiaussinndszaauviiacigg

¥ o

a1savarelnlusdulnulvengninssumenisviianeiiuselalasiausenitduanad

U 1% a

lAs9a319AgQAKUY random coil LilagnnseAuMENILANAITanRSIRRIUTHIANUTEYAY

q

a a

yiae1eq azfalunanilasadmfsgidsusdanduwuy B sheet Misediudu
suiloundausanniu lasasamaniveslalasalnlusdulnulnefannsansiaimsgils
lngldmatiniFesnsuanosudunsuseanlasalnl (FT-IR spectroscopy) IneiTeuniiey
Aulassasislelasalnlusduluulneiaaniusssuaad (self-gelled SF) AW 5 wanas
awnesuveslalasialilusdulnulvneauduty 2% laeumidn Ngnnsedumenisiiveans

anuIIAIAUTTIANUTZIaU SOS SDS Way STS fimnuidutiu 0.03, 0.09, 0.15, 0.45% lag



1%

wwtdn nuhanasuvedlalasiaalnlusduluilvenngasuansiinndinizvedlassaiaie
niivadlushiu laun amide |, I, uag Il Mavadu 1650, 1550 waz 1300 cm™ muadu (Hu,

X., Kaplan, D., Cebe, P, 2008) LagkandiaTn18904a15anksIieiauseinnlsegay laun

wyoana CHs way CH, fauAdu 2955, 2873, 2849 cm’! wagngdauia (sulfate group) o
AU 1200-1140 cm™ (Rommel B. V. et al, 2012) uonaniidmuin Wiofiuaududues

1% ]
] 1 v = o]

a1sanusFsiivTEnUsERay v liiniinvemydafaniaudaty ewniia Amide |
Juilandnaldlunsimseilassadrmiegiivedusiu ddnwazning fsliaunsafdnw
lassadramiegivedlusiuliedgaziden desldlamaniendinarans Fourier self-

deconvolution (FSD) T4lun1531A51291521028 TagNATAATUNTI9AINYIIATUAE9)

a a

a1unsafisgiuunviavedlaseadamfsgdvesinlusdulvulve laun Tasasne B sheet

9

(1590-1605, 1697-1700cm™), tyrosine (1590-1605 cm™), random coil (1638-1653 cm™),
alpha helix (1654-1659 cm™) wag B turn (1660-1696cm™) (Lu. Q et al, 2010) A19197 7

a a

wansfesazvatlasaaimasniivesialasivlusdulvulne (SF) Anmdudu 2% neumidn 9

q

= a

QNNTTAUAITANTAALTIFIRIUTZANUTERAU SOS SDS way STS NA1uLdudy 0.03, 0.09,

0.15, 0.45% Tagtimiin 9nmsfnymuiilassairmdonifnuuniigalulnlusdullned
1RaANETTNYIR Ao TATeasne B sheet wuuseu 33.17% daulaseasnadug laun
tyrosine, random coil, alpha helix lLag [3 turn A¥NWU 3.86, 9.00, 9.31 hay 24.59%
pudriu Tuvnsiilelnsaalilusdulnlnefignnsedudionisifinaisanus sisiussiam
Uszqaunuilfosazvadlasiaine B sheet tiutudulszana 35-09% Juiuriiauazaiiu
WuUeEN5anRIIFIRIUsTIANUTEIaU NaN1INAADLEAILALINI @158RLIIRIRIUTZAY

Uszqaun 3 sllafluwlduiiaznsziunisiialalasaalnlusduluilnenilassadne B sheet

ynduniInnsallilusduluninefiaaniusssuvnd (Akira M. et al, 2006) WuNUIFLNA77

a ¥ ¥ a

lalasialnlusdulnulvengnnssduiisnisdivaisanusafsinussinnysegau STS fnay

Y 9

it 0.09% Tngtwiin ffesaslaseadns B sheet wnitan Ao 49.15% Fenuandlifiuds
panansalunsifndunsitenvesdndldveutsewinsluanavesinlusdulvulnedae
fules Mufenainduniisenvesdiuiildveuiisenindluanalilusduluulne fuae
Todafavos STS aelulelasaawind

W3T8ve Ji Hun P. uazane Tl 2012 ldefuretamsivdesundadlaseainamiend

a

vaalglasaalnslusdulvuain random coil tlu B sheet ann15UsINYURfinilarAay

'
a

1631 cm™ wdsnnszAunsiaavedhilusdulnuiigansanuseisiiusennlise

q

a1 15 97109 Tewesureliin Tuansazarelwlusdulvudindudiuusenaudusnuiuuin

Waiinansanunssfamussnnlaifivszgasciy asiinnshinesn (dehydration) 31nlaseasng



(hydrophobic

UYBUUN

il
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a

Tlusduluy waziiulontalunise

nansazarglnlu
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interaction) L@

MANYTUUAD

spulnulasundaslasea

LA

[

1A596579 B sheet ua

=

a

v

il

MAYY

¥

1650 ot 1550 et 1300 ome1 1200-1140 =m™®

P55, 2673, 2843 om*
CH, and CH, stratch

3270 em*

Arida | Amide |l Sulfate group

Armide

=i0-H stretch

5F self-gel

(%) BRUERIISUEL |

n)

400

]

3600 3200 2800 2400 2000 1600 1200 B0

4000

Wavenumber (cm™)

1650 o™ 1550 e 1300 o1 1200-1140 em®

Amiide |

2955, JET3, 2849 =m™

CH,

Amide | Amide Il Sulfats group

and CH, siretch

=0-H stretch

5F self-gel

2)

(%h) BOUERILSUEL |

3200 2800 2400 2000 1600 1200 800 400

3600

4000

Wavenumber (cm™)



3270 emi? 2955, 2673, 2849 em™ 1650em™ 1550 cm® 1300 omel 120041140 em™

=0 siratch CH, and CH, siretch Amide | Amided  Amide |l Sulfatz group
H T T T T
A 1! 1 i
! 1 1
1! ] 1
1 ! 1 1
L P
1
r—* 1 1
1
1
1
£
a
o
f =
2
E
f =
&
=

0.03%

5F self-gel

4000 3600 3200 2800 2400 2000 1600 1200 300 400

Wavenumber (cm™)
Al 5 anasuvedlalasealnlusduluulnglng (SF) MwSouainaisuausswinsansazans
IullusBulmilng eudiudu 2% Taemitn fuasanussisinussanyseqau (n) SOS (1)
SDS wag (A) STS fianuidudu 0.03, 0.09, 0.15, 0.45% Iagtiwtin Tinseilagldineada FT-

IR spectroscopy



M13199 7 Sewazvedassairamisgivelalasinlusdulualve (SF) Mnssuanansuauseineansasanglnlusdulnulne ety 2% lagumdn fduans

anussRsiUsEAMUTERaU SOS SDS waw STS Anvandudi 0.03, 0.09, 0.15, 0.45% Ingtwiin Aiaszvlaimada Fourier self-deconvolution (FSD) a1ndia

Amide | (avaau1650 cm™) vesannduvedlalasiaalnlussuluslne

Seuazvaslaseadiamiegil (%)

lalasaalulusdululneignnszdudtenisifiuansanusefeialssinnuszgausiingmee

rauadiu (cm™) TnssaS sl MyTysaulua ANuuturas SOS aMududuves SDS aMududuves STS
Tnefiania (%lnesinniin) (%lngtimn) (%lntinin)

535UYA 0.03 0.09 0.15 0.45 0.03 0.09 0.15 0.45 0.03 0.09 0.15 0.45

1590-1605 tyrosine 3.86 2.13 1.11 1.61 0.60 6.46 3.69 1.92 3.15 5.26 1.00 7.52 6.10

1608-1637

16971700 B sheet 33.17 36.78 | 38.17 | 36.72 | 38.11 | 36.95 | 37.06 | 39.32 | 3557 | 3554 | 49.15 [ 38.66 | 39.05

1638-1653 random coil 9.00 11.27 ] 10.37 | 10.47 9.57 21.16 120.40| 10.20 (1255 13.23 | 10.67 | 9.27 9.25

1654-1662 alpha helix 9.31 10.44 | 25.56 15.97 19.88 057 1261 20.03 [17.88 20.28 | 11.13 |19.21| 19.73

1663-1696 beta turn 24.59 3938 | 24.78 | 35.22 | 31.83 | 34.85 | 26.24 | 28.53 |30.85| 22.36 | 24.11 |25.34 | 25.88




MANaNINAaIT1eiy annsaflazesuieienalnnsinaavesilusdulnalned
WLATanRIIRIRIUTEANUSERAU SOS, SDS way STS T@sannd 6 1WIU§5U1M3J1‘VIEJ‘17i@§Jﬂu
anmzansarans lassadreneluanelgussnaudediudilivouh (hydrophobic domain)
Tudadruiluinnirdiufigeui (hydrophilic domain) aneleluanaiieiufudulaseed
Lifuszideu TnelassaiamAendifinuaindian Aelaseaiianuy random coil luvniziians
anussisiaUssnUszgaudioaransluthilerududunnnieududuing asfanis

Jasesindulugad (micelle) Tnamngdan (SO,) WWudrufiveuiiniediui aziusen

'
a =

dudatuilaeseu wazaneledaradaduduilivevdwiediumvedluanaagiudngim
Tulnssadne Wenauansanusaiainyssnmlszqautis 3 slafidauenaelddafauas sy
WANFNAY AI8ANNTNTUANeY duatsazatelaiusdulunlng arndiasiAnusingnisal
nsgdumainaalilusdulmive Tneuvdldidu 3 ned dwieluil

1) ilenauansanusaiaiy SOS Afaelddafadunarivsvqautiosiian fuasazans
ullusdulmilng nsnsedunsinmasintuednedng ssaznanmafnaaveslusbulu
Ingagluraadszana 113-144 $alas msiinaalunsdianunsasdungldain 3 naln léun
(1) Mafindunsisenvosaudilaveuri (hydrophobic interaction) seninluianavesinly
sBulnufvanelddadaves SOS Fensedulilassairmisgiivesarsazarglnlusduluailne
\Wasuuasanlasead1auuy random coil Wulassadrauuu B sheet (2) nsiindunsizen
voalniradia (electrostatic interaction) seninaUszaauvesnydalnaves SOS Auluiana
Uszquinvesanelslilusduluulve uaz (3) mawdsuuladlassaiamiogiivesansazansl
Tusdulnulneanlasead1auwuu random coil Wulassadieuuy B sheet fiinduniy
593377 (self- transition of B sheet) waziflosanmnuenaeldsarauazuszgauues SOS
tondn SDS waz STS aillemainnalnil 1 uaz 2 lfos vinliansazanelnlusdulvalne
Aadueaiuetieing Wsveznansinwauuds 113-144 $3lus Saillennadiaviinnalnd
3 5ula

2) ilonauansanussfaia SDS vie STS Aflanslddarasniniuariiuszgauannnii
505 fearududuiivngaufuaisararsilusdulvalne msnszdunisifaiaasiiniu
0619390157 srarnaIMnAnendreglurisUssinn 14-20 unit msnalunsdiannsn
o3ureldann 2 naln Idur (1 n1siindunsiservesdauiildvouta (hydrophobic
interaction) szinaluanavesiwlusdulnuiuaneledafaves SOS Gensedlilasadrmie
piwesansazarelnlusdulvalneiuasundasainlaseaiiauuy random coil Wulaseaing
WUy B sheet (2) Msiindunsisenvedlniliata (electrostatic interaction) 5¥319Uszqau
yosvgidamnues SOS Auluanauszquinvesansldlnlusdulmilve wazilesainainuen

angledafauazUszgaunas SDS wag STS unna1 SOS Fadileniatinnalnd 1 uag 2 g



wnninsdives SOS shliAnmanszduasaraslusdulnulnedadusatuegnasenid:
quldltnagnu Self-transition of B sheet mussTUBIAAATIM

3) \lenanansanussdaiia SDS nie STS Aflaneldsanaginituaziiuszgauunnniy
50S demududuiigauiuly fuarsazarslnlusduluulne msnszdunisiaaisiiatu
el 24-30 wdl Fedrininsiamalunsdd 2 madaealunsdifannsnesungldan 2
nalnidudeafulunsdd 2 wieududuves SDS uaw STS fifutuagluvilviszgauann
Juauorainusmdnnalulih (repulsive force) fulinanauszaauvesinlusdulailng uas

YLADNSHAALIALS

SF random chain

1 | 1
| | |
1 | 1
! 3 © I U |
| | i 1
1 | #
1 979 .? I o o F o :
| 5 w | 31 v PO Lt * Self transition of f sheet !
| & G“ I d Jﬁu ransition of i shee |
1 1 SRR, ] 1
1 LT © L i e [ | + Hydrophohic interaction 1
| °o n ¥ .
1 : v Em ............. * Electrostatic interaction :
| | Qe |
1 Hydrophobic blocks | 1
: Hydrophilic blocks I II) SF + SDS/STS IIT) SF + SDS/STS I
| . : at optimal concentration at high cuncfnfration :
: Anionic surfactants : fast gelation rate (14-20 min) delayed gelation rate (24-30 min) :
, (80S/SDS/STS) I e . |
| Hydrophilic domain I as repulsive force . ﬁ( !
| I " -- v I
I ‘f\ I % ﬁ _j‘ o ﬂ i I
! Hydrophobic I —ﬁ Jﬁ" |
1 domain 1 ° a Jg Jﬁ’ e @ 1
I I e ?A% Jg D
| | ng e 1
1 ﬁ_ﬂ, 508 1 (1] Jg‘ Jg’ w ,='=‘ 1
| Bo~_~ sDS 1 'ﬁ . 1] ‘* . |
: STS c‘,’ : e T L= 89 I
R _ o "
! I ﬁ ] 2 |
I Agueous SOS/SDS/STS | H\-‘ﬂr[)ph[)hlc mteractmn @ e I
| solution = Micelle 1 "4 Electrostatic interaction 4" 1

A 6 nalnnsiistaavesinlusdulvulneinauduansanussiaiaussnmysegau SOS,

SDS, STS

NWITBee X. Wu uazaug Tl 2012 laesurenalnnisiiaiaavesinlusdumenis
N3AUAINAITANKSIRIEIUTTLANUTERaulTd Lﬁamiammﬁqﬂaﬂismwﬂiz@auazmﬂluﬁw
szAnnsdnEesilitisusautliead (micelle) lnsaelddaraneluluanaidudiuily
yauih (hydrophobic domain) wagnsgains (SO,) Hudrudieui (hydrophilic domain)
Gedrudauia (50, iveuihiazdifnioonnluanavesilusduluy lFluifuaus

Auliiveuivetluanavediilusdulmilviuingstu saduayunisiindunsizervesdiun



[
Y ]

lsiwputi (hydrophobic interaction) sevinsluianavastlusdulvalifuintude Snvs dau
flaivouiveduanalnlusdulvudsannsnfndunsisevesduiiliveuti (hydrophobic
interaction) fuanelsafavesasanussisiaUszanUszau nseduliAnnsasunlas
Tassai1emfeiann random coil \u B sheet FsvililassairstimsdnGosimdusadou
11nBedu

uonNHNuATees Ji Hun P. uasame Tul 2012 ldeSurefmarasarsanussiisin
Uszianenee laua a15anusefiafauseanyseqau (anionic surfactant) @15aAKIIRAIRD
Uszinnldduseq (non-ionic surfactants) waga1vanusefafIUszinnUseauIn (cationic
surfactants) fionsnszdunisiisaalilusdulug wuiinalniviiliansazanglwlusdulva
Aawa Rnanmsiiansanussaeialuyiliiannisiei (dehydration) senananalewasinly
Buluy dawaliiRndunsiservesdauiildvouii (hydrophobic interaction) aneluluiana
untu Wlusdulmidavdsuniadiassaiiafioniann random coil iu B-sheet Tngmud
a1sanussiaUssinvlszgavanusansedunsiiaearesinlusdulnaladiniiniiaisan
wssAaiaUsEnlaiTuseaie 10 wih luvasfiansanussiaiayseinnyszquan illnlusduy
Inunnaznouusnduesnuilagliiicduiaa iesanniindunsiseorvedlniliaie
(electrostatic interaction) ‘ﬁLLG?NLm5zijﬂizﬁgmﬂmmmiamL.Liﬁdﬁ’wim;awmawiszﬂw
Tusdulny

3Teves C. Deng wavany Tul 2013 lafnwinavesasanwsafaliiuszn e lu
nsnsgdulviansazanglvlusduluiineg wud asanwsIieiIaIunTnsIsEeEIaINIsang
wavadllusdulmiliihdudedsutunisudesliiAamanussnd Tnsasanussfain
Uszinnuszgavanansaisimainnavesasararslilusdulnaliisiign lnefinnsiae
aveshlusdulmidunannnsinsesiiifussfouanniureduananielu (crystalline
structure)

uiTeves Akira M. wazanzlul 2006 51891uIIN15WABULUAAN UL YD
arsazarglilusduidulalasnalulusdul Wunannnsdunshtenvesdiudldveut
(hydrophobic interaction), Wusglalasiau (hydrogen bond) wagdunsnserveslniain
(electrostatic interaction) neluluianavestilusdu dwaliluanaBudngiaiosnm 1An

a

lassasnmfsniuuy B-sheet 1nTu wazlassasamAsniuuy random coil anas vl

Y

=

lassasiefanundusu nswasunlasiainanasidusuudundulale (ireversible) &4
gn35vensiineg Juediuanududuresarsazatslilusdu wazarsndifuusaiio

N3EAUNAALIR



7 dndudiliazaneii (gel fraction) vaslslasiealnlusduluslnefinSouainasuay
szrdnansazareinlusduluulvefiuarsaaussfsiaussunnlsegausingneg
nMsinseidnduiiliazansiwedelasioa avtsuenisnnuannsalunisiiniuse
vioiAnlassadsildazarsininielulalnsioa nwit 7 wansdesazdnaruiiliazanstiives
lelaswalilusdulnulve (SF) fwIsuainaiswauszninasazatglilusduluulneainy
udu 29% Tagtimiin AuansanussisinUssnanyuszgau SOS SDS uag STS fimnduduy
0.03, 0.09, 0.15, U@z 0.45% Iaetimiin wuin lelaswalwlussulnlnefioanusssuwas
Fndruiiliazanotnea. 79+0.55% lurmsitlelasoallusdululnefinIouainaiswas
sgriaansazansllusdulnlvefuasanussisiaUssinnussau fdaduiliazanetioy

[y a

Tug19m9ws 58.41+4.44 59 83.53+0.52% JUDYNUILALALAINULIUTUYDIAITAALTIAIN

Y

=< a

Usziamuszaau laenmsiy maiiuasanussisinussianuszaauiivuliufiudaduilsl
avaneiwaslelnanalnlusdululne Serouivaenndosiunansinmeilasiaimiond
voslalnsiaalushde 4.4 invinsfuansanussisiavssinmussaauii 3 sladuunliud
wwnszdunninlelasiaallusdulvinediliaseadne B sheet snntu Fadulassadreiilyl

Avayl

100
90 I
80 |
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e 2222222 2222222
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SRYUIBDG
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P=]

Sauazdad NN

96940440600 040¢ S0 Srommn

1 b bt bbbt bbdbbbbsds

B B s e S - e s -4
S22 2SS ST S S S 22 T2 L

Y

b
9

b

el
'Y
o

0 0.03 0.09 0.15
AaNmdudwsasaTaaus vl sandszaay (klaswivin)

A 7 Sevazdnaiunliazarsuivesveslalasiaalulusduluulve (SF) Mwsuunansnay
serinasazangllusdulnulneanududy 2% lagtmin duaisanuwssfalaussnmusey

au (MSF, #3505, N sps B STS) fimuidiudu 0, 0.03, 0.09, 0.15, 0.45% Tnerhwen




8 Snsnsgesaaren1sdanmueslalnsaalulusduluulvedignnszdudlenisfiansan
wseRsRUTzINUsERaUTlianieg Tuarsazaaeulellusiies (protease) fignaz
31899RWL9 (pH 5.5)
MsEnwSnInsesdarenisiininaesialanaalilusduluulnefianiizsiaes
Fawiled] vilinuivszesnanilalasaalilusdulnnessdosamendiomlussandl 4 du
wanusa SnisdaelunsieszinalnmsUanddesineigiiuainlalanaalddniie ne
nsgosaaevsTanimuedlelasiaalilusd ulmilnefignnssdusonaifuasanusadisin
Useinnusegauria SDS wag STS Fanududy 0.09, 0.15 uay 0.45% Iagthmiin Ussiiy
Mndevaztntnuiinavaeveslalnsaalnlusdulualng nmendwluaisazans normal
saline pH 5.5 fiflvoulasl protease AuddY 3 unit/ml gaumngi 37 °C figaaan 6 Falu,
1%y, 3 %y, 5 Ju waz 7 Ju dannd 8 lelasealnlusduluulnedignasedusie sos L
anunsanaaeuldidosnlufinnuasindsandiunssuiunsiuianuudenwds (freeze

drying) nuan1Meaes lalaswangnsdesaaielaegvdailiasluannedinann laelifey

1%
o

vt MUINLAIRLARDLEY 10-35% rasannniull 7 T4 wWeRarsantalasaalnlusduluulne

a Y Y

NgNnTeAume SDS NIATNTUse wulidanuuansseglitudAynaifvesios

Y q
14 (%

azthvinuiansmdevesiis 3 gns luvusilelasoalnlusdulalnedignnsedudie STS
wuh lelasiaaignnasdudng STS arundutu 0.09% lnsniindidosastminuisnunie
unnilelnsiaatignnazdude STS arundudu 0.15 uag 0.45% lnsvimin egrsditoddty
ysadn Taefnan 7 fu lelasaalnlusdulmlnefignassdusne STS mnududu 0.09% lae
dmiin f¥esasiminuisnandowindu 35.67:3.21 lelasaaiignnsedudae STS A
it 0.15 waw 0.45% Taeuiwiin f¥esastmiinuisnavdenion 12-16
nashsnstosaansveslslnsieaiaonadosiuna FTIR spectra deconvolution Tu
viade 4.6 finuin lnssaranfendivin beta sheet vadlelnsiaalnlusdulvalnefignnszsu
fae STS aandudu 0.09% Tastntdn SUsuauiniian 1assadns beta sheet Foidu
TassamAsniiudause gndosamemsdinmieeulesilusiealdoinnitlassaisvde
Uy random coil Fevililelnsiaalnlusdulmlnedignaseduse STS mnandudu 0.09%
Tnothniin dosaamslusasfitiigaiiofiouiulalasinagnsduiiiusunm beat sheet lu
1A59a5191e8N71 LardenAaBInUTIB9IUYes Yang C., Bochu W. Tul 2009 finamliiens

nsgegaaisveslalasiaalilusBuiuedivisunamedaswaiamiegiivila beta sheet vas

Tlusdu
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9. armduiiwvadlelnsalwlusdulvulnefignnszdudenisiuansanusefsinuszian
Uszgauvllasneqiugaariniany (L929 mouse fibroblasts) Tuszauesujufnisniy
43§ 1ISO10993 Part 5
ilesanaziilelasealwlusdulvalnefignnszdusonisiuansanusafamausziam
Uszgauluuszendlflunmsihdanesefiufiefnuunalunymaass 3s1dudosiimavnaoy
muduiivdowadluszaunieslfinnisvedlalasaaniuinsgiu 1ISO10993 Part 5 now Ha
Sovaymssentinvesadimiliwesydlomnsdesuivasataanlalnanalalusdulu
Tnefiarududusngeg wansnmd 9 Tnenui arsadaainlalasaalnlusduluylng (SF)
wissnnasransvisansararsllusdulvlneanududu 20% lemdn fumsanuss

AaRaUszLanUseRau SDS waz STS nnaududu Wiluiiviowad lnedsevarnissondin

YDARAIDT 140-160% Lilaisuiuwadiaedluaivnsdeasaavianni (DMEM+10%FBS)

Y

YR ! sala

wazlufigsududruusznau (DMEM) Tun19959973 wadMwistasslun1nsiassadninig
WRUBIARLTAA (Zinc acetate) H598aEN1550ATINVDITAALNET 25% UuLAAILMAUI1 TIA
svfandnnuduiivdewad Auiulalasaalwlusdulnulnefignnsesiudae SDS uaz STS 34

= U o % o = 1
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anuinTwsasasanalalanea (dilution wiv)

wzaessunvansanatalasiaabilusdulyulne (SF) MwsSeuanansuausenineasazane
Tlusdululveanududuy 2% neumidn duasanussdsiiyssanyseau (N ) SDS uag
(34 ) STS NianunTuage Wetisunu (M) DMEM without FBS, DMEM+10%FBS uag

Zinc.



10 Auansalunisazanevatrasaivluasazatgasanusaieiiaussnnuszaausiln

199

[ (% '
=< ISy = va

lalasaalnlusdulnulneniaunguilazdiluussgaldlunisiidunesalivdediany
avanguIin I5euiiansannsdisiiausaiiuanuauisalunisavaeivennesaiula
Tnansiinduluwaduesasanussfsianiuiduiiveuineeniiluanain wagiunaaiu

flageudndiusazusslaanaildveuinlidnglu (L Liu Lu Sun et al, 2013) feiy

NuIelidvihnisavatsnesalivluansanusefsiissinniseravnanudutduLnesgiy

a

geannau 3 ntuIsieesalunazatsluasanusafailseanyseyavilunauiu
ansavarelnlusdulnulveiensedunisiaaaluniouqfunisussyresaiivlulalasiaa 34
o Id ¥ = = s a =% a
Jududeadinisfinwianuaiunsalunisazatvgeanvesaesaiiuluaisanusefisiiuseian
U5¥9aUm4 SOS, SDS wag STS fiAuttudusi1eg tawa 0.06, 0.18, 0.3, 0.42, 0.54, 0.66,
0.78 waz 0.9 % lneuniin fanmi 10

Faduaududusuiuvesansanussiimineunauivatsazatglnlusdulunlve wa
N15nAaas WU STS Tugraaadudy 0.18-0.9% laguninanansaavaiginasadiulauin
Mgn AoUszanal 0.72-0.93mg/ml luvaued SDS uag SOS nnaududuazareinesailule
aiAiy 0.6 mg/ml Wil FegepAdosiuaNNTUIngs (CMC) VBIATAALSIRIRIN 3 BEn
Muandluni3ed 2 STS Tanududuwingaiosnan dumsausainlugasnaudutua
171 SOS wag SDS Famuausalunisiialuwasiasdieiiuauausalunisazaisved
wmasaliule (Li X. et al, 2014)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
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0.1
0

(mg/ml)

& o
u

ke

ANNNTwz a9tAR SR i%

bul

bbb
[Ty
o

L2 2
St

i

0.06 0.18 0.3 0.42 0.54 0.66 0.78 0.9

anaiindusasasazatadIsaausieiassnnlszaay (%lasimiin)
A 10 anududuvesaeialiuiazangluasanusaiaiiuszianyuseaau (33) SOS (W)

SDS wax (B8 ) STS) fimnudiudu 0.06, 0.18, 0.3, 0.42, 0.54, 0.66, 0.78 uaz 0.9% Iy

[% '
o Y =

wwitin igaumgll 37°C, pH 7.4



11 dnsmsuanddesinainivvaslalasaalwlusduluulvnengnnsedudienisiinaisan
wseRsRIUsTINUSERaUTlianiee Tuasazaneaulwsilushes (protease) Nan1az
31899RL9 (pH 5.5)

PNNaNIANIANNENNTalunsazagvenespiuluasanlsaieiUssanUses

& a

aurliaengg wudn STS ansaazasmesaiulaunian delu lunismaaawioant auiden

Y
(%

STS ALY 0.09, 0.15, 0.45% laguinin Wazareineialulasnauivaisazaigluy

§ A

Ing ietusUlalasaalvlusduluulnenussameigiu lnvanududuinesgiuidonu

Y

Anwfe 0.7 mg/ml tlasananuiuduinesniiugning iansanagnauveunasaiuly

Y

lalasiaa SeazmsvanUdesavaunesaiuvaslalasaalvlusdulvulneignnsedume STS
Anadugy 0.09, 0.15, 0.45% lasiwiin nnenasudluansazats normal saline pH 5.5 9

Houlesl protease AMILUNTU 3 unit/ml geuvindl 37 °C Aaaaan 6 Falug, 194, 3 U, 5

9 Y

Tu, 734, 9 Tu war 12 Fu wanedsnni 11 wud wespiiugnuandaesainlalasaans 3

Y
% o w a

gnegemaiiind Tugie 6 Taluswsn ldnwuanuuanssegrelideddgvvainveiovasns

UanUdegazauinesniuveia 3 gas wazndannniun 1 Juduld wuilalasealnlusdu

Y

Y

Inulnefignnseauaie STS ANuudy 0.09% lagumin dfesazn1sanUdeeinasaiy

A v

teeninlalnsiaadn 2 gnsegrelitudAgynieada Wewgiuin 7 SevavmsUanlaesazay

Y

PBIANWYDMY 3 gus Budiadasiiiganizad Man 12 Ju lelasealvlusdulvulned
QNNIEAUAIY STS AMLTNTY 0.09% lnetmiln dSesaznisuanUdesazauiosiian Wiy
79... luvauzlalasiaadn 2ans fSesaznisUuanUdeazauuszunn 85-92 naseeavnis
UanUaesazaunasaiiuiilululumaisrtuiudnndesaarenisdinimvedlslasiaaly
te 4.8 lelasalilusdulvulveiignnseduale STS anududu 0.09% tagumidn
Y 1 = v A = o § v i s a Y Y A Y
gnTnsgegaaeneiininiiign Jvilvivanudesinesaiulaludnsdimaniduiu

1N91UAT8VD9 Kasoju N thaz Bora U. Tul 2012 wag Vishal G. et al Tul 2009

s a

S189UINARTATUAILITaN AR UATASYlUYe UL (hydrophobic interaction) U

Y
14

lssaseiiliveuivednlusduluy Tngaunsaviuiingudnvazvenaesaiiuiiinizegly
lassadanfegiuuy beta-sheet vadlnlusdulvulaninnisiiaseninisinailn NMR uag

weallindoudngesisaus aulugnsnisvanydesimesniiuduiuisunavesdiunldveudn

(% ' [
1 o A

vaslilusdulvy wazuSuuvesdunsisenldyeviiminduseninduianainesniiuiy

Y
v A A o Y

Tassasranluveutnvealwlusduluy Tuaudded Awuin STS ALY 0.09% Tnguindn

=3

aunsanszrunisiialalasiaalilusulvnulveniuiunalasasne beta sheet uniign 3

q

a1 liiislenalumsiindunsiserldyeuiniuluananesaiiuuiniu nesuiudnsinis

=

1 dl ¥ = Id Y U § a dyy dl
gogaangitfian JuTunglvdnsinisvandaesinesaiiuainlalasaaiidnngs



100

=
‘féa 90 :[
v
@
& 80 T
% 70 1 I
© 60
5
2 50
T 40 l
@
?: 30 i
g 20
@ 10 4
@
A 0 i

0 1 2 3 9 10 1 12

> L'am‘s(i’u) !

Al 11 JevazmsUanddesazaninespiiuveslelnsaalnlusdulnlnefignnseduseans

AnLIIASIUTEINUTERAUYTA STS AULTNTY 0.09, ==*=0.15, =*=0.45 % lag

thuitin fian1azdraesians (pH 5.5 gamgl 37 °C)
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INLEULALNTZAUNTNIBVIUNATUNUNARDS
Pnuansinuautivesialasaallusdulnulnegasaeginediu idelaidenlalas

Y Y

walWlusdulnulnefgnnsedueaie STS Aududy 0.09% lagumiln Nussuaesaiu luld

[

szgndtlunsfineusganiamluniseengnsdugnissnaunaznseiunismeveunaluny

a

ynaas iosnilugnsfianunsaussyinesaiuldunniian danunshluanigdraosimis
1niign (Srsnsdesaanednian) uarannsamuaunisanUdesineiaiuliiuuiuign
wagliflanuuivieiwad 1929 TuseduresufiRnsivadeunuinnss i 15010993 Part
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FuA (1) ngudilidviinisnen (2 nguidnuidigliuiueatadueadnuiwnanlinig
nsunnd (3) nguisnudelelasaalnlusduluslvefinszdusne STS anandudu 0.09%

& a

lagumtn wazliusspaesaiv waz (4) ngunsnwimelalasaalulusduluulneinsedueme

Y
v 1

STS ANdudu 0.09% tagumin Nusspaeialiu MsAnwiUssaninmeslalasaally
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e Thai silk fibroin hydrogels were formed by the induction of anionic surfactants.
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Abstract

Thai silk fibroin (SF), a protein derived from cocoons of Bombyx Mori silkworm, was
introduced to form hydrogel by the induction of various anionic surfactants including sodium
octyl sulfate (SOS), sodium dodecyl sulfate (SDS), and sodium tetradecyl sulfate (STS)
which have similar chemical structure but different alkyl chain lengths (hydrophobic
molecules) and charges. The effects of types of anionic surfactant and their concentrations on
gelation mechanism and time of SF were systematically investigated. We found that SDS and
STS which have long alkyl chain lengths and high negative charges could accelerate the
gelation of SF to occur within 14-42 min in a concentration dependent manner. The optimal
concentrations of SDS at 0.15%wt and STS at 0.09%wt induced the SF gelation to the fastest
rate at 14 and 20 min, respectively. The higher concentrations of SDS and STS delayed the
gelation to 18-30 min, possibly due to the repulsive force of negative charges between
anionic surfactant and SF molecules. SOS which has short alkyl chain length and low
negative charge slowly induced SF to gel at around 113-144 h. The mechanisms of SF
gelation induced by these 3 anionic surfactants were supposed to be combination of
hydrophobic and electrostatic interactions, as well as the self-transition of beta sheet (only in
case of SOS). FTIR analysis presented that the SF+0.09%wt STS hydrogel showed a
significant increase in beta sheet percentage in its secondary structure when compared to that
of self-gelled SF. The SF+STS hydrogels were further employed to encapsulate curcumin for
the controlled release application. The SF+0.09%wt STS hydrogel encapsulating curcumin
showed slow rate of degradation while sustained the release of curcumin. This hydrogel can
be applied as a minimal invasive injectable hydrogel or as hydrogel for topical treatment of

diseases.

Keywords SF; anionic surfactant; sodium tetradecyl sulfate; gelation; hydrogel; curcumin
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Introduction

Silk is a natural protein produced by silkworms, spider, or other insects. Silk derived
from the cocoons of Bombyx mori silkworms consists of two main proteins, fibroin and
sericin. Recently, silk fibroin (SF) has been widely used in biomedical field particularly of
tissue engineering and drug delivery system since it is biocompatible, biodegradable, non-
immunogenic, and easy to be fabricated into various forms [1-3]. Furthermore, SF has beta
sheet secondary structure that is formed by the strong hydrogen bond, resulting in a robust
mechanical properties and slow degradation rate comparing to other natural polymers [1].
Generally, SF is dissolved in neutral salts, such as lithium bromide or calcium chloride, to
prepare the regenerated SF solution which can be further fabricated into various forms using
different techniques. Our previous researches demonstrated the fabrication techniques and
applications of various SF-based materials obtained from regenerated SF solution and its
blends with gelatin, for example, film, hydrogel, scaffold, tube, microsphere, and fiber [4-10].
Among various formulations, hydrogel is the form of hydrophilic polymer chain network
which has ability to encapsulate the drug with high efficiency. Some of hydrogels can be
easily fabricated by self-assembly or crosslinking techniques and form as in situ or injectable

hydrogel in which the drug administration is minimal invasive [11-12].

In the regenerated SF solution, the hydrogen bonds in secondary structure are broken
down so that the beta sheet structure is changed to the water-soluble random coil structure
[9]. However, the random coil structure is unstable and tends to turn back to the original beta
sheet structure to form the irreversible gel. At physiological condition, this spontaneous
gelation of SF may take place within couple weeks to months. Furthermore, the SF gelation
can be induced by physical factors such as pH [13], temperature [14], shear force [15],
ultrasound [16], and electric field [17] or chemical factors such as precipitating agents (e.g.

salts, organic solvents, large polymeric agents, and low molecular weight polymers) [18], or
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crosslinking agents [19]. Surfactants also affect protein-protein interactions by either
encourage or inhibit protein aggregation. Anionic surfactants have been shown to accelerate
the gelation of SF rather than the cationic and non-ionic surfactants [20]. Wu ef al. reported
that some concentrations of anionic surfactant, sodium dodecyl sulfate (SDS), accelerated the
gelation of SF in the order of minutes due to the strong hydrophobic forces and electrostatic
effects triggered by the surfactant, leading to protein unfolding and rapid association into
particles and organization of gel network [21]. Due to the proposed mechanisms of SDS to
gel SF, the charge and alkyl chain length of anionic surfactant would play important roles to
control the gelation process of SF. Therefore, other anionic surfactants having similar
molecular structure to the SDS but different molecular weight, number of CH, (alkyl chain
length), critical micelle concentration, and charge are supposed to gel SF with different
behaviors. Sodium octyl sulfate (SOS) and sodium tetradecyl sulfate (STS) are those having
lower and higher molecular weight and number of CH, (alkyl chain length) compared to SDS
(Table 1), respectively. Furthermore, SDS and STS have been used in medical products

approved by the U.S. Food and Drug Administration (US-FDA).

In this study, the effects of three anionic surfactants (SOS, SDS, and STS) at various
concentrations on gelation process and physico-chemical properties of Thai SF hydrogels
were systematically investigated. Firstly, the characteristics of the three anionic surfactants
including critical micelle concentration and zeta potential were evaluated. Then, various
concentrations of anionic surfactants were mixed with Thai SF solution at a particular ratio.
Zeta potential and gelation time of the mixed solution were measured. The chemical
structure, chemical stability, gel fraction, and degradation rate of different SF hydrogels were
characterized. The SF hydrogels developed in this study may find useful applications in
biomedical field such as a minimal invasive injectable hydrogel while it can control release of

curcumin or further applied with other drugs or active compounds.
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Materials and Methods

Materials

The cocoons of B. mori Thai silkworm “hybrid silkworm (J108 X Nanglai strain)”
were a kind gift from Queen Sirikit Sericulture Center, Sisaket province, Thailand. Anionic
surfactants including sodium octyl sulfate (SOS, molecular weight 232.27 g/mol), sodium
dodecyl sulfate (SDS, molecular weight 288.38 g/mol), and sodium tetradecyl sulfate (STS,
molecular weight 316.43 g/mol) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
The chemical structures and characteristics of the three anionic surfactants were presented in

Table 1. Other chemicals used were analytical grade.

Preparation of regenerated SF solution

The silk cocoons were boiled in 0.02 M sodium carbonate (Na,COs) for 20 min and
then washed with deionized water to remove sericin. The degummed SF was dissolved in 9.3
M Lithium Bromide (LiBr) at 60°C for 4 h. The SF solution was then dialyzed against
deionized water for 3 days using dialysis membrane (MWCO 12,000-16,000, Vikase
Company Inc., Japan) to remove salts [22]. The dialyzed SF solution was centrifuged at 9000
rpm for 20 min to remove impurities. The final concentration of the obtained SF solution was

approximately 6-7%wt.

Evaluation of critical micellar concentration of anionic surfactants

Three types of anionic surfactants (SOS, SDS and STS) were dissolved in DI water
(pH ~6) and 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid buffer (HEPES buffer, pH
7.4) at various concentrations. The critical micellar concentration (CMC) of the anionic

surfactants was determined by the absorbance deviation method using a spectrophotometer at
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the absorbance of 250 nm [23]. The CMCs of different surfactants are estimated from the

break point in the surface tension versus (log) concentration plot.

Determination of zeta potential

Three types of anionic surfactants (SOS, SDS and STS) were dissolved in DI water
(pH ~6) or 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid buffer (HEPES buffer, pH
7.4) at 0.25%wt. The mixed solutions of SF (2%wt.) and anionic surfactants at various
concentrations (0.03, 0.09, 0.15, and 0.45%wt.) were prepared in HEPES buffer (pH 7.4).
The zeta potentials of anionic surfactants and the mixed SF-+anionic surfactants were
measured by Zetasizer Nano (Malvern Instrument) at 37°C. The zeta potential was

automatically calculated using Smoluchowaski equation (n = 3).

Formation of SF hydrogels

The SF solution was mixed with various concentrations of anionic surfactants
prepared in HEPES buffer (pH 7.4) at a volumetric ratio of 1:1 and incubated at 37°C. The
final concentration of SF was fixed at 2%wt while that of anionic surfactants were varied at
0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, and 0.45%wt. For the curcumin-encapsulated
hydrogels, curcumin (0.7 mg/ml) was dissolved in STS (0.09, 0.15, and 0.45%wt). Then, the
curcumin in STS was mixed with SF solution at a volumetric ratio of 1:1 and incubated at

37°C.

Measurement of gelation time of SF hydrogels

The sol-gel transition and gelation time of SF solution mixed with various
concentrations of anionic surfactants at pH 7.4, 37°C were evaluated from the change of
solution turbidity using a spectrophotometric method. The mixed solutions were pipetted into

96 well UV-transparent plates (Cornig, USA). The dynamic optical density of the solution
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was measured at a wavelength of 550 nm every 2 min for 120 min using a microplate reader
(FLUOstar Omega, BMG LABTECH, Germany). The gelation time was determined from a

half-maximum optical density value.

Fourier transform infrared spectroscopic analysis

Chemical structure and functional groups presented in the SF-+anionic surfactant
hydrogels were examined using Fourier transform infrared (FT-IR) spectroscopy (Perkin-
Elmer, USA). The FT-IR analysis was based on the identification of absorption bands
concerned with the vibrations of functional groups presented in the samples. All spectra were
recorded in the wavenumber range from 4000 to 500 cm™! at a resolution of 4 cm™!. The beta
sheet content within the amide I region (1590-1710 cm™!) was quantified by Fourier self-
deconvolution and peak fitting using OMNIC™ software (Thermo ScientificThermo
Scientific, USA). Peaks were fit using 11 Gaussian line shape profiles assigned to positions
reported in previous work [24]. The beta sheet structure of SF was assigned at 1616—1637
and 1697—-1703 cm™! [25], and the relative structures (tyrosine, random coil, alpha helix, and
beta turn) were calculated from the ratio of area under the curve for beta sheet peaks to that of
the whole deconvoluted spectra. Furthermore, the stability in chemical structure of the
SF+0.09%wt STS hydrogel when incubated at 37°C for different periods (10 min to 3 days)

were also examined using FT-IR, comparing with the SF solution and the self-gelled SF.

Evaluation of gel fraction of SF hydrogels

The SF+anionic surfactant hydrogels were freeze-dried and weighed (W)). The dried
samples were immersed in deionized water at 37°C for 24 h. After that, the remained samples

were collected and dried in an oven at 50°C. The weights of dried samples remained were
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measured (W;). The gel (crosslinked) fraction of samples was calculated from the following

equation;

w
t
% gel fraction of hydrogel = — x 100
g

W,
Where W, is the weight of dried sample remained after immersed in DI water for 24 h

and W, is the weight of dried sample before immersion (n= 3).
Evaluation of maximum solubility of curcumin in anionic surfactants

Curcumin (1 mg/ml) was dissolved in various concentrations of anionic surfactants
(0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, and 0.45%wt). The curcumin suspension was
incubated at 37°C under shaking at 200 rpm for 24 h. After that, the non-solubilized curcumin
was separated by centrifugal at 2000 rpm and dried at 60°C. The dried weight of non-
solubilized curcumin was measured and the maximum concentration of curcumin which can

be dissolved in anionic surfactant was calculated (n = 3).

In vitro degradation test of SF hydrogels

The SF+anionic surfactant hydrogels were freeze-dried and weighed (W)). The dried
samples were immersed in normal saline solution containing Protease XIV (3 units/ml, pH
5.5) at 37°C. At the pre-determined time points, the remained samples were collected and
dried in an oven at 50°C. The weights of dried samples remained were measured (#;). The

percentage of weight remaining of each hydrogel was calculated from the following equation;

w
t
% weight remaining of hydrogel = — x 100

W,
Where W, is the weight of dried sample remained after immersed in collagenase

solution for different periods and W) is the weight of dried sample before immersion (n= 3).
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In vitro release test of curcumin from SF hydrogels

The curcumin-encapsulated SF+STS hydrogels (D =1 cm, H= 0.5 cm) were
immersed in normal saline solution containing Protease XIV (3 units/ml, pH 5.5) at 37°C. At
the pre-determined time points, the supernatant was collected to measure the optical density
of curcumin at a wavelength of 430 nm. The concentration of curcumin released was
determined from the standard curve of curcumin prepared in the same medium at known

concentrations. The accumulative release of curcumin along the study was evaluated (n = 3).

Statistical analysis

Statistical analysis was performed using one-way ANOVA by IBM SPSS Statistics
software (Version 22). Differences were considered significant when p<0.05. All data were

expressed as the mean + the standard deviation.

Results

Critical micelle concentration of anionic surfactants

Table 1 presents the critical micelle concentrations (CMC) of SOS, SDS, and STS
prepared in HEPES buffer (pH 7.4), as evaluated by the spectrophotometric absorbance

deviation method. The CMCs of SOS, SDS, and STS were 3, 0.25, and 0.065%, respectively.

Zeta potential of anionic surfactants and the SF-+anionic surfactants
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210 Zeta potentials of SOS, SDS, and STS prepared in HEPES buffer (pH 7.4) were
211 shown in Table 1. SOS had the lowest negative charge (-23.43 mV), followed by SDS
212 (-52.36 mV) while STS had the highest negative charge (-68.00 mV). Table 2 presents the
213  zeta potentials of the mixed solutions of SF (2%) and anionic surfactants (SOS, SDS, and
214  STS) at different concentrations (0, 0.03, 0.09, 0.15, and 0.45%). The zeta potential of SF
215  solution alone was -2.98 mV while the mixed solutions of SF+anionic surfactant showed
216  more negative charge. The zeta potentials of the SF+SOS solutions were around -4.61 to -
217 4.92 mV irrespectively of the SOS concentration. On the other hand, the zeta potentials of the
218  SF+SDS and SF+STS solutions were concentration dependent. The zeta potentials showed
219  higher negative charge when the concentration of SDS and STS was increased. The SF+STS
220  solutions showed the highest negative charge when compared with the SF+SOS and SF+SDS
221  solutions at the same anionic surfactant concentration. Noticeably, there was a significant
222 change in zeta potential at a particular concentration range of SDS and STS. For example, the
223  difference in zeta potential between SF+0.09% SDS and SF+0.15% SDS was around 15 mV
224  (difference between -7.90 and -22.90 mV) while that of the SF+0.03% STS and SF+0.09%
225  STS was around 9 mV (difference between -9.54 and -18.13 mV).
226  Table 1. Chemical structure and characteristics of 3 types of anionic surfactants: sodium
227  octyl sulfate (SOS), sodium dodecyl sulfate (SDS), and sodium tetradecyl sulfate (STS).
SOS SDS STS
I & Q
Molecular CH3(CH2)5CHQO—§—ONa CH3(GHz)10CH20-S~ONa CH3(CH)12CHz~0~§-ONa
structure (0] o) o}
CgH7Na SO, C1,Hp5NaSOy C14H9NaSOy,
Number of CH, 7 11 13
Molar mass 232.27 288.38 316.43

(g/mol)
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CMC 3 0.25 0.065
(%wt., pH 7.4)

Zeta potential -23.43 + 2.89 -52.36 £0.72 -68.00 + 7.14
(mV)

228

229

230 Table 2. Zeta potentials of the mixed solutions of SF (2%wt.) and anionic surfactants (SOS,

231

SDS, and STS) at different concentrations (0, 0.03, 0.09, 0.15, and 0.45%wt.).

Thai silk Type of

Concentration of anionic surfactants (%wt)

fibroin anionic
solution surfactants 0 0.03 0.09 0.15 0.45
SOS 4714039 -4.89+032  -4.9240.06  -4.61+0.30
290wt SE SDS SOOI S S64076 7904113 22.9047.65%  24.93+1.10%
STS 9.54+0.63  -18.13+7.38  -24.40+3.24%  -25.20+1.73%
232
233  * asignificant difference at p<0.05 comparing with the values of 0.03% anionic surfactant
234  within the same group of anionic surfactants
235
236  Sol-gel transition and gelation time of SF hydrogels
237 Figure 1 demonstrates the dynamic change in optical density of 2% SF sol-gel
238 induced by addition of SDS and STS at various concentrations. The profiles of SF sol-gel
239  transition were governed by the concentration of anionic surfactants added. In the case of
240  SDS, it seemed that the SDS concentration between 0.15-0.39% accelerated the gelation of
241 SF to occur within 14-20 min (Table 3). On the other hand, the low (0.03 and 0.09%.) and
242 high concentrations (0.45%.) of SDS delayed the gelation process to 24-42 min. The similar
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243  profiles of SF sol-gel transition and gelation time (20-30 min) were obtained when STS at
244 0.09-0.45% were added (Table 3). Interestingly, SOS at any concentrations extended the
245  gelation time to 113-144 h, compared to the SDS and STS. Furthermore, it was observed that
246  the optical density of the completely gelled SF depended on the concentrations of anionic
247  surfactants added (Figure 1), indicating the different transparency levels of the final SF
248  hydrogels. Figure 2 revealed the appearance of 2% SF hydrogels induced by addition of SOS,
249  SDS or STS at various concentrations. The images confirmed that the color and turbidity of
250  the completely gelled SF were varied upon type of anionic surfactant and its concentration.

251  The SF+SOS hydrogels showed more turbidity than the SF+SDS and SF+STS hydrogels.

252

(A)

Optical denslty at 550 nm

253 Time (min}

254

255 (B) 1
256

0.8
257

258

259
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260

261
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Figure 1. Dynamic optical density of SF (2%wt) sol-gel transition induced by the addition of

(A) SDS and (B) STS at various concentrations (

0.00, = = =0.03,—— 0.09, —&—

0.15, —*—0.21,-—--- 0.27,——0.33, = * = 0.39 and —=—0.45%wt.) and incubated at

37°C, pH 7.4.

Table 3. Gelation time of SF hydrogels induced by addition of SOS, SDS or STS at various

concentrations (0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, and 0.45% wt.).

Concentration of SF Concentration of anionic
(%owt.) surfactant (%wt.)

Gelation time (min)

SOS SDS STS
0.00 N/D** N/D**
0.03 N/D** N/D*
0.09 42 20
0.15 14 30
2 001 113-144 h* 12 ’g
0.27 18 24
0.33 20 30
0.39 20 30
0.45 24 30

* The gelation process was measured by sloping the tube at 45°, 90°, and 180°

* N/D The gelation process was not completed within 120 min, as measured by optical

density at 550 nm.
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Concentration of anionic surfactant (%wt.)

0.03 0.09 0.15 0.21 0.27 0.33 039 0.45

SF + SOS

SF + SDS

SF + STS

Figure 2. Appearance of SF hydrogels induced by the addition of SOS, SDS or STS at

various concentrations (0.03, 0.09, 0.15, 0.21, 0.27, 0.33, 0.39, and 0.45%wt.).
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Chemical structure of SF hydrogels

The FT-IR spectra of self-gelled SF, the SF+anionic surfactant hydrogels, and STS
are presented in Figure 3. The spectra of self-gelled SF and the SF+anionic surfactant
hydrogels showed the characteristic peaks of protein including amide I, II, and III at 1650,
1550, and 1300 cm!, respectively. The characteristic peaks of anionic surfactants, CHs and
CH, stretch at around 2955, 2873, 2849 cm! and sulfate group at 1200-1140 cm™!, were
clearly observed on the spectra of all SF+anionic surfactant hydrogels. The CH stretch peaks
seemed to be dominant when the concentration of anionic surfactant was higher. The
difference in spectra among SF hydrogels formed by three anionic surfactants was not
noticed. Table 4 demonstrates the percentage of secondary structures of each SF+anionic
surfactant hydrogel obtained from deconvolution of amide I band of FT-IR spectra. For the
self-gelled SF, the percentages of tyrosine, beta sheet, random coil, alpha helix, and beta turn
were 3.86, 33.17, 9.00, 9.31, and 24.59%, respectively. The beta sheet percentages of all
SF+anionic surfactant hydrogels were slightly increased to 34-49% compared to that of the
self-gelled SF (33.17%). It was noted that the SF+0.09% STS hydrogel showed obviously
high beta sheet percentage (49.15%) compared to the other hydrogels. Figure 4 shows the FT-
IR spectra of the SF+0.09% STS hydrogel after incubated at 37°C for 10 min to 3 days,
comparing to those of SF solution and self-gelled SF. At 10 and 20 min, the SF+0.09% STS
remained the solution state, the characteristic peaks of amide I, II, and III were similar to
those of SF solution. On the other hand, the spectra of SF+0.09% STS after gelled for 2 h, 1
day, and 3 days likely resemble to the spectra of self-gelled SF. The significant difference in

spectra of SF+0.09% STS hydrogel incubated at 2 h, 1 day, and 3 days was not observed.
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Figure 3. FT-IR spectra of SF hydrogels induced by the addition of (A) SOS, (B) SDS and

(C) STS at various concentrations (

0.00,—0.03,—0.09,— 0.15,—0.45%wt.).

Table 4. Percentage of secondary structures of SF hydrogels induced by addition of SOS,

SDS and STS at various concentrations (0.00, 0.03, 0.09, 0.15, and 0.45%wt.), as obtained

from deconvolution of amide I band of FT-IR spectra.

17

Percentage of secondary structure (%)

Tyrosine, Beta sheet, Random coil, Alpha helix, Beta turn,
Hydrogels 1608-1637 and  1638-1653  1654-1662  1663-1696
1590-1605
1697-1700 cm! cm’! cm’! cm’!
cm!

2% Self-gelled SF 3.86 33.17 9.00 9.31 24.59
0.03% SOS 2.13 36.78 11.27 10.44 39.38
0.09% SOS 1.11 38.17 10.37 25.56 24.78

2%SF +
0.15% SOS 1.61 36.72 10.47 15.97 35.22
0.45% SOS 0.60 38.11 9.57 19.88 31.83
0.03% SDS 3.07 34.63 19.53 - 32.16
0.09% SDS 3.17 35.03 8.95 10.85 24.13

2%SF +
0.15% SDS 2.41 36.84 12.79 15.11 26.53
0.45% SDS 3.03 34.18 12.06 14.71 27.60
0.03% STS 5.26 35.54 13.23 20.28 22.36
0.09% STS 1.00 49.15 10.67 11.13 24.11

2%SF +
0.15% STS 7.52 38.66 9.27 19.21 25.34
0.45% STS 6.10 39.05 9.25 19.73 25.88
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Figure 4. FT-IR spectra of SF hydrogels induced by the addition of 0.09%wt. STS and
incubated at 37°C for () 10 min, (—) 20 min, (—) 2 h, (—) 1 day, (—) 3 days, comparing

with (—) SF solution and (—) self-gelled SF.
Gel fraction of SF hydrogels

Gel fraction of the SF+anionic surfactant hydrogels is presented in Figure 5. All
hydrogels had 60-80% gel (water insoluble) fraction. This implied that around 20-40% of the
hydrogel was solubilized in water after incubated for 24 h. It was noted that the hydrogels

prepared from high concentration of anionic surfactants (0.45%) had lower gel fraction than
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the hydrogels prepared from low concentrations of anionic surfactant. However, the statistical

difference in gel fraction among hydrogel groups was not found.

Maximum solubility of curcumin in anionic surfactants

Maximum solubility of curcumin in various concentrations of three anionic
surfactants is shown in Figure 6. It was clear that STS at 0.18-0.9% could solubilize curcumin

upto 0.7-0.9 mg/ml while all concentrations of SOS and SDS solubilized curcumin only 0.1-

0.4 mg/ml.
100
80 |
.E 60 |
8
< 40 |
]
U}
20
0

0.03 0.09 0.15 0.45
Concentration of surfactant (%wt)

Figure 5. Gel (water insoluble) fraction of SF hydrogels induced by the addition of (") SOS,
(™) SDS and (M) STS at various concentrations (— 0.03,—0.09,— 0.15, and —

0.45%wt.).
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Maximum solubility of curcumin
(mg/ml)

0.8
0.6
0.4
02 |1 I ;
1 I I
; 1
0
0.06 0.18 0.3 78 0.9

0.42 0.54 0.66 0.

Concentration of surfactant (%wt)

Figure 6. Maximum solubility of curcumin in (") SOS, (M) SDS and (M) STS prepared in
HEPES buffer (pH 7.4) at various concentrations (0.06, 0.18, 0.30, 0.42, 0.54, 0.66, 0.78, and

0.90 wt%).
In vitro degradation profile of SF hydrogels

Figure 7 shows in vitro degradation profile of the SF+STS hydrogels after incubated
in normal saline solution containing Protease XIV (3 units/ml, pH 5.5) at 37°C. All hydrogels
simultaneously degraded along 7 days. The SF+0.09% STS hydrogels degraded at slower rate
than the other two hydrogels. The remaining weight of SF+0.09% STS hydrogel after 7 days
was 68% while the remaining weights of SF+0.15% STS and SF+0.45% STS hydrogels were

only 46-50%.
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Figure 7. In vitro degradation profiles of SF hydrogels induced by the addition of STS at
various concentrations (=+@+=: 0.09, =—A=0.15, and —@— 0.45%wt.) and incubated in normal

saline solution containing Protease XIV (3 units/ml, pH 5.5) at 37°C.
In vitro release profile of curcumin from SF hydrogels

Figure 8 shows in vitro release profiles of curcumin from the SF+STS hydrogels after
incubated in normal saline solution containing Protease XIV (3 units/ml, pH 5.5) at 37°C.
Curcumin continually released from all hydrogels along 9 days. The release of curcumin
became stable after 7 days. It was noted that the SF+0.09% STS hydrogel released curcumin
at the slower rate than the other two hydrogels. The accumulative percentage of curcumin
released from SF+0.09% STS hydrogel after 9 days was 66% while those of SF+0.15% STS

and SF+0.45% STS hydrogels were as high as 80-85%.
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Figure 8. In vitro release profiles of curcumin from SF hydrogels induced by the addition of

STS at various concentrations (=*®@==+0.09, =—A=0.15, and —@— 0.45%wt.) and incubated in

normal saline solution containing Protease XIV (3 units/ml, pH 5.5) at 37°C.

Discussion

Hydrogel is the form of cross-linked polymeric material which has capability to hold
large amount of water in their three-dimensional networks [26]. The advantages of hydrogel
over other forms of materials are the high degree of flexibility very similar to natural tissue
and high ability of drug encapsulation. The hydrogel is therefore introduced in wide range of
applications. One application of hydrogel is drug delivery system in which it can be applied
as minimal invasive injectable form [11-12]. The hydrogel fabricated from SF has been
reported in many researches. Due to the nature of SF secondary structure, various techniques
such as physical factors [13-17], chemicals [18-20], or radiation [27] can be used to induce
SF hydrogel formation by changing the secondary structure to a stable beta sheet form. SDS,

an anionic surfactant, was reported to accelerate the gelation of SF [21]. In this study, we
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introduced other 2 anionic surfactants, SOS and STS, to form Thai SF hydrogel in
comparison with SDS (Table 1). SOS and STS are anionic surfactants which have similar
chemical structure but their molecular weight and number of CH; (alkyl chain length) are
lower and higher than SDS, respectively. The effects of charge, alkyl chain length, and
concentration of these 3 anionic surfactants (SOS, SDS, and STS) on the gelation time and

physico-chemical properties of Thai SF hydrogels were here reported.

We found that the mixing of anionic surfactants with SF solution at a particular ratio
(1:1 by volume) could form the hydrogels within 14 min to 144 h depending on the type of
anionic surfactant and its concentration (Table 3). It was clear that SOS which has short alkyl
chain length (number of CH, = 7, MW = 232.27 g/mol) and low negative charge (-23.43 mV)
slowly gelled the SF compared with the SDS and STS which have longer alkyl chain length
(number of CH, = 11 and 13, MW = 288.38 and 316.43 g/mol, respectively) and higher
negative charge (-52.36 and -68.00 mV, respectively). Interestingly, we observed that either
SDS or STS formed the SF hydrogel at the fastest rate when mixing at optimal concentration.
The optimal concentrations of SDS and STS at 0.15 and 0.09% resulted in the hydrogels
formation within 14 and 20 min, respectively. On the other hand, the lower and higher
concentrations of SDS and STS than the optimum significantly delayed the gelation time to
18-42 min. The chemical structure of the completely gelled hydrogels analyzed by FT-IR
demonstrated the presence of characteristic peaks of protein (amide I, I1, IIT) and anionic
surfactant (CH;3 and CH, stretch and sulfate group) in all hydrogels (Figure 3) [28, 29, 30].
The deconvolution of amide I band of FT-IR spectra indicated that the addition of anionic
surfactant particularly of STS at 0.09% tended to form the SF hydrogels with higher beta
sheet extent than the case of self-gelled SF [20, 30, 31]. The charge of anionic surfactants
also played a significant role in controlling the gelation rate [21]. We here elucidate that there

was a significant change in charge of the mixed SF+anionic surfactant solution at a particular
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concentration range of anionic surfactant (Table 2). This range of concentration was rather
close to the optimal concentration that fastest gelled the SF (SDS ~0.15% and STS ~0.09%).
The charge effect of anionic surfactant was also clearly seen from the delayed gelation time
when the concentrations of SDS and STS were increased (Table 3). The proposed
mechanisms of SF gelation induced by anionic surfactants in this study were summarized in
Figure 9. The anionic surfactants formed micellar structure in aqueous solution. When the
anionic surfactant was mixed with SF solution, some micelles were remained and interacted
electrostatically with positive-charged domain of SF chains while some alkyl chain
(hydrophobic tail) of anionic surfactant were attached on hydrophobic domain of SF chains to
induce beta sheet formation. In case of SOS at any concentrations, the alkyl chain was short
and number of micelle was low so that the gelation by these two mechanisms was slowly
occurred. There would also be self-transition of beta sheet structure of SF occurred
simultaneously. On the other hand, SF solution in the presence of SDS or STS at optimal
concentration was gelled at the fastest rate possibly due to the balance between hydrophobic
and electrostatic interactions while the number of negative-charged SDS or STS was not too
high to obstruct these interactions. Moreover, it was supposed that the long alkyl chain
(hydrophobic tail) of SDS or STS had more possibility to interact at several hydrophobic
domain of SF, then the beta sheet structure was formed quickly. However, the high
concentration of SDS or STS increased the negative charge which may induce repulsive force
with the abundant negative charges of SF molecules, resulted in the slightly delayed gelation
time. Wu et al. also reported that some concentrations of SDS accelerated the gelation of SF
in the order of minutes due to the strong hydrophobic forces and electrostatic effects triggered
by the surfactant, leading to protein unfolding and rapid association into particles and

organization of gel network [21].
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Figure 9. The scheme showing the proposed mechanisms of SF gelation induced by anionic

surfactants (SOS, SDS, and STS) at different concentrations.

The SF hydrogels developed in this study was used to encapsulate and controlled
release of curcumin. The solubility of curcumin in each anionic surfactant was determined.
We found that 0.18-0.9% STS could solubilize curcumin upto 0.7-0.9 mg/ml. This was
explained by the lowest CMC of STS which allowed STS to form micelle easily at lower
concentration than the SOS and SDS. It is known that the micelle increased the solubility of
hydrophobic molecule like curcumin [32, 33]. Due to the high solubility of curcumin, STS
was therefore selected for further investigation of this study. Furthermore, STS has been used
in medical products approved by the U.S. Food and Drug Administration (US-FDA).
Curcumin (0.7 mg/ml) was dissolved in STS at the concentrations selected from the previous

data (0.09, 0.15, and 0.45%). The SF+0.09% STS hydrogel degraded in proteinase solution at
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443  the slowest rate. This was possibly due to the significantly higher beta sheet percentage in its
444  secondary structure (Table 4), resulting in the more stable structure than the other two

445  hydrogels (SF+0.15% STS and SF+0.45% STS hydrogels). The release profiles of curcumin
446  also showed the slower rate for the case of SF+0.09% STS hydrogel (Figure 8) because the
447  slow-degrading hydrogel would sustain the release of curcumin, compared to the fast-

448  degrading hydrogel. The main mechanism that governed the release of curcumin from the
449  hydrogel was supposed to be hydrogel degradation rather than the diffusion because

450  curcumin was encapsulated within SF hydrogel and there would be some hydrophobic

451  interaction between curcumin and SF molecules [34, 35]. The gel fraction result also

452  supported the proposed release mechanism of curcumin. Only 20-30% hydrogel was

453  solubilized in water, therefore the remaining of 70-80% would be degraded by enzyme

454  reaction (Figure 5).

455 Finally, the stability in chemical structure of the SF+0.09% STS hydrogel after

456  completely gelled was confirmed (Figure 4). The chemical structure of the hydrogel did not
457  change significantly after it was completely gelled. In conclusion, the SF hydrogels formed
458 by the induction of anionic surfactant, particularly 0.09% STS, showed the shortest gelation
459  time, higher beta sheet percentage in its secondary structure, stable chemical structure, slow
460  degradation rate and slow curcumin release rate. We also elucidated the effect of various

461  anionic surfactants having similar chemical structure but different alkyl chain lengths and
462  charges on the gelation time and properties of SF hydrogels obtained. This investigation

463  would ensure us to understand the mechanism of SF gelation induced by anionic surfactant as

464  proposed in this study.

465

466  Conclusions
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SF hydrogels were formed by the induction of various anionic surfactants (SOS, SDS,
and STS) which have similar chemical structure but different alkyl chain lengths and charges.
The effects of alkyl chain length, charges, and concentrations of anionic surfactants on the SF
gelation time were shown. SDS and STS accelerated the gelation of SF in a concentration
dependent, the higher concentration of SDS and STS delayed the gelation rate due to the
repulsive force of negative charge between anionic surfactant and SF molecules. The SF
hydrogels induced by STS which has longest alkyl chain and highest negative charge,
particularly at 0.09% STS, showed the shortest gelation time, more beta sheet percentage in
its secondary structure, stable chemical structure, slow rate of degradation and curcumin
release. The mechanisms of gelation of SF induced by anionic surfactants were supposed to
be the combination of hydrophobic and electrostatic interactions, as well as the self-transition
of beta sheet (only in case of SOS). This hydrogel was suggested for the use as a minimal
invasive injectable hydrogel which can encapsulate and control release of curcumin or other

drugs.
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