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Abstract  
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Investigator:       Saifon Chaturantabut, Thammasat University 
E-mail Address:  saifon@mathstat.sci.tu.ac.th 
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Numerical simulations of many natural phenomena described by nonlinear differential 
equations can lead to dynamical systems with very large spatial dimension when a standard 
discretization scheme is applied. To reduce the computational cost for solving each of these large-
scale systems, model reduction methods can be used to produce relatively low dimensional model 
that still provides accurate solution of the original system. In general, the accuracy of a given model 
reduction technique is evaluated through certain error measurements when compared with some 
known reference solutions. Besides considering these approximation errors, this work aims to 
preserve fundamental behavior of the original system, which will be done through contraction 
analysis. 

This work develops a nonlinear model reduction approach that not only reduces the 
computational complexity or substantially decreases the simulation time, but also preserves 
monotonicity and contractivity properties of the original full-order model to ensure the stability as well 
as the existence and uniqueness of the solution. The proposed technique is based on using basis 
sets from proper orthogonal decomposition method and modifying an interpolatory projection 
approach, called discrete empirical interpolation method, by enforcing a symmetric structure of the 
approximation. The efficiency and accuracy of the proposed method are illustrated through the 
numerical tests on a nonlinear model describing reaction diffusion problems. 
 
Keywords: Model order reductions, Contractivity, Ordinary differential equations (ODEs), Partial 
differential equations (PDEs), Proper orthogonal decomposition (POD), Discrete empirical 
interpolation method (DEIM) 
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Abstract

Development of Structure-Preserving Nonlinear

Model Reduction

by

Saifon Chaturantabut

This work develops a nonlinear model reduction approach that not only reduces

the computational complexity or substantially decreases the simulation time, but also

preserves monotonicity and contractivity properties of the original full-order model

to ensure the stability as well as the existence and uniqueness of the solution. The

proposed technique is based on using basis sets from proper orthogonal decomposition

method and modifying an interpolatory projection approach, called discrete empirical

interpolation method, by enforcing a symmetric structure of the approximation. The

efficiency and accuracy of the proposed method are illustrated through the numerical

tests on a nonlinear model describing reaction diffusion problems.
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Chapter 1

Introduction

Introduction to the research problem and its significance

In many practical applications, the simulation of complex physical phenomena

often involves nonlinear differential equations, which upon spatial discretization, lead

to dynamical models with very large spatial dimension. This creates a need for model

reduction methods that can produce relatively low dimensional models but can still

provide accurate behavior of the original systems.

For a number of physical systems, including a large class of mechanical systems

and network models, it is crucial to preserve certain structures and properties, such as

stability, through the corresponding reduced-order systems. For linear dynamical sys-

tems, various structure-preserving model reduction frameworks have been proposed

[61, 11, 45, 46]. For nonlinear systems, projection-based model reduction approaches

with basis from proper orthogonal decomposition (POD) or Karhunen-Loeve expan-

1
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sion [38, 37, 10] have been successful in substantially reducing the number of state

variables, as well as preserve the system structures. However, these approaches fail to

reduce the computational complexity involved with evaluating nonlinear terms. Un-

less there is a special structure, such as a bi-linear form, the evaluation of nonlinear

terms has the same order of complexity as the full order system. Hence, develop-

ing efficient model reduction approaches that preserve system properties is still a

challenging research issue.

Literature review

A common model reduction approach is based on applying the Galerkin projection

onto a low dimensional subspace, which is expected to contain dominant characteris-

tics of the corresponding solution space [2]. This subspace can be represented by a set

of reduced basis vectors with global support which are “learned” ; they are constructed

from high fidelity classical discretization schemes. These reduced basis functions are

hence problem dependent. Fine scale detail is encoded in these global basis functions

and this makes it possible to obtain good approximation with relatively few basis

functions.

The basis that is commonly used with Galerkin projection is constructed from

proper orthogonal decomposition (POD). POD has been successfully used with a

Galerkin projection to provide reduced-order models in numerous applications such

as compressible flow [53], computational fluid dynamics [35, 52], aerodynamics [14],

and optimal control [34].
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Although the Galerkin projection-based methods with POD basis have been suc-

cessful in substantially reducing the number of state variables, they typically fail

to reduce the computational complexity used for evaluating nonlinear terms. This

inefficiency of the POD-Galerkin approach arises from the high computational com-

plexity in repeatedly calculating the inner products required to evaluate the projected

nonlinearities. Several approaches have been proposed to address this fundamental

issue.

In [4], Missing Point Estimation (MPE) was proposed to improve the complex-

ity of the POD-Galerkin reduced system in finite volume discretization, essentially,

by solving only a subset of equations of the original model. A reduced system is

obtained by first extracting certain equations corresponding to specially chosen spa-

tial grid points and then projecting the extracted system onto the space spanned by

the restricted POD with components/rows corresponding to only these selected grid

points. This procedure can be viewed as performing the Galerkin projection onto

the truncated POD basis via a specially constructed inner product as defined in [7]

that evaluates only at selected grid points instead of computing the usual L2 inner

product. Two heuristic methods for selecting these spatial grid points are introduced

in [4, 3, 6, 5] by aiming to minimize aliasing effects in using only partial spatial

points. This was shown to be equivalent to a criterion for preserving the orthogonal-

ity of the restricted POD basis vectors, which is further translated into a criterion

for controlling condition number growth. These grid point selection procedures were
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later improved by incorporating a greedy algorithm from [60]. The applications of

the MPE method are primarily in the context of a linear time varying system arising

from finite volume discretization of a nonlinear computational fluid dynamic model

for a glass melting furnace [4, 3, 6, 5]. It has also been used in modeling heat transfer

in electrical circuits [58] and in subsurface flow simulation [16].

Alternatively, techniques for approximating a nonlinear function can be used

in conjunction with the POD-Galerkin projection method to overcome this com-

putational inefficiency. There are a number of examples that use model reduction

approaches with nonlinear approximation based on pre-computation of coefficients

defining multi-linear forms of polynomial nonlinearities followed by POD-Galerkin

projection [22, 23, 42, 8, 26, 15]. One of these approaches is found in the trajectory

piecewise-linear (TPWL) approximation proposed by Rewienski and White [51, 50],

which is based on approximating a nonlinear function by a weighted sum of linearized

models at selected points along a state trajectory. These linearization points are se-

lected using prior knowledge from a training trajectory of the full-order nonlinear

system [49]. The TPWL approach was successfully applied to several practical non-

linear systems, especially in circuit simulations [48, 49, 50, 58, 12]. However, there

are still many nonlinear functions that may not be approximated well by using low

degree piecewise polynomials unless there are very many constituent polynomials.

In order to handle general form of nonlinearity, empirical interpolation method

(EIM) was proposed by Barrault, Maday, Nguyen and Patera in [9] in the finite
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element setting. Discrete empirical interpolation (DEIM) [18] was then introduced

for general nonlinear ordinary differential equations. A considerable reduction in

complexity is achieved by DEIM because evaluating the approximate nonlinear term

does not require a prolongation of the reduced state variables back to the original high

dimensional state approximation required to evaluate the nonlinearity in the POD ap-

proximation. DEIM therefore improves the efficiency of the POD approximation and

achieves a complexity reduction of the nonlinear term with a complexity proportional

to the number of reduced variables. An error bound for the DEIM approximation is

given in [18] which shows it is nearly as accurate as the optimal POD approximation.

Recently, DEIM has been successfully used for model reduction in many applications

such as in neural modeling of full Hodgkin-Huxley models for realistic spiking neurons

[33], in shallow water equations [57], coupled circuit-device systems [31], and reduced

order quadrature algorithm [1].

However, these efficient nonlinear model reduction approaches based on interpo-

latory projection, e.g. gappy-POD, EIM and DEIM, may not preserve the structure

of the original systems as required in the application of port-based systems or me-

chanical models. The existing works on structure preserving for nonlinear systems

[38, 37, 10] are based on special modifications of POD-Galerkin projection extended

from the approaches for linear systems [61, 43, 29, 44, 11]. Hence, the resulting re-

duced systems still always have complexity proportional to the full-order dimension

in the case of general nonlinear functions. That is, these reduced systems may not
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be able to achieve a significant reduction in actual computation time. This project

will employ a concept of interpolatory projection-based nonlinear model reduction

approach, particularly DEIM, and enforce the structured form of the approximated

nonlinear term to derive a structure-preserving nonlinear model reduction approach

that can be computed with low computational complexity.



Chapter 2

PRELIMINARY: Monotonicity

and Contractivity

This chapter presents some theoretical background required for deriving a structure-

preserving model reduction for dynamical systems. The desired form of system struc-

ture to be preserved will be discussed together with the significance of this structure.

2.1 Problem Formulation

Consider the system of nonlinear ordinary differential equations (ODEs) of the

form:

dy

dt
= F(y), y(0) = y0, (2.1)

7
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where y = y(t) is an n dimensional state variable at certain time t ≥ 0 and F is

a differentiable nonlinear vector field in y with Jacobian of F given by JF (y, t) =

∂f
∂y
(y, t). The goal is to construct a reduced system that can provide approximate

solutions that preserve the behavior of the original system. In particular, we are

interested in the property called monotonicity of the vector field, which can be

used to guarantee the contractivity of the flow in the solutions of dynamical systems.

The contractivity is an important tool for deriving the conditions for stability, as well

as the existence and uniqueness of equilibrium solutions.

2.2 Monotonicity & Contractivity

We first consider the logarithmic norm, introduced independently by Germund

Dahlquist and Sergei Lozinskii in 1959 [40, 25] defined next in a special case of Eu-

clidean space.

Definition 2.2.1 Let A ∈ Rn×n be a constant matrix. the associated matrix measure,

called logarithmic norm is defined as

µ[A] = lim
h→0+

∥I + hA∥ − 1

h
, (2.2)

where ∥ · ∥ is the standard Euclidean norm.

The logarithmic norm can be used to measure the distance between matrices.

Note that ∥ · ∥ can be any norm and when it is the Euclidean 2-norm, µ(A) is the
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maximum eigenvalue of the symmetric part of A. In particular, it can be shown that

[55], for the Euclidean 2-norm ∥ · ∥

µ[A] = λmax

(
A+AT

2

)
, (2.3)

where λmax(·) gives the maximum eigenvalue of the input quantity. Equivalently, it

can also be shown that, for any induced norm in Hilbert space, for u,v ∈ Rn

µ[A] = sup
u ̸=v

Re ⟨u− v,Au−Av⟩
⟨u− v,u− v⟩

, (2.4)

where ∥x∥2 = ⟨x,x⟩, x ∈ Rn. Consider the system (2.1) is a linear problem of the

form F(y) = Ay + r(t), i.e.

ẏ = Ay + r(t), y(0) = y0.

Using the identity (2.4) for the Euclidean 2-norm and ∥y∥ d
dt
∥y∥ = 1

2
∥y∥2 = yT ẏ =

⟨y, ẏ⟩, we have

d

dt
∥y∥ =

1

∥y∥
⟨y, ẏ⟩

=
1

∥y∥
⟨y,Ay + r(t)⟩

=
1

∥y∥2
⟨y,Ay⟩∥y∥+ 1

∥y∥
⟨y, r(t)⟩

≤ µ[A]∥y∥+ ∥r(t)∥.
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Integrating the above differential inequality gives

∥y(t)∥ ≤ ∥y(0)∥ eµ[A]t +

∫ t

0

∥r(τ)∥ e(t−τ)µ[A]dτ. (2.5)

The above bound illustrates the application of logarithmic norm on certain system’s

properties, such as stability and perturbation. The logarithmic norms can also be

used to show contractivity of differential equations, as well as the general form of

differential inequalities, which can further extend to the convergence analysis for

numerical schemes used in solving differential equations.

The notion of logarithmic norm can be extended to the nonlinear operator in

Banach spaces as shown next [55].

2.2.1 Logarithmic Lipschitz constants

We now define and state elementary properties of logarithmic Lipschitz constants,

which can be used in the applications to ODEs.

Definition 2.2.2 Let (X, ∥ · ∥X) be a normed space and f : Y → X be a function

where Y ⊆ X. The least upper bound (lub) and the greatest lower bound

(glb) Lipschitz constants of f induced by the norm ∥ · ∥X on Y are defined,

respectively, by

LY,X [f ] = sup
u̸=v∈Y

∥f(u)− f(v)∥X
∥u− v∥X

, and ℓY,X [f ] = inf
u ̸=v∈Y

∥f(u)− f(v)∥X
∥u− v∥X

.
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The least upper bound (lub) and the greatest lower bound (glb) logarithmic

Lipschitz constants of f induced by the norm ∥ · ∥X on Y are defined by

MY,X [f ] = lim
h→0+

LY,X [I + hf ]− 1

h
, and mY,X [f ] = lim

h→0−

LY,X [I + hf ]− 1

h
.

Note that, this work considers the setting for systems of ODEs with X = Y ⊆ Rn

and we will use the notation LY,X [·] = L[·], ℓY,X [·] = ℓ[·] and MY,X [·] = M [·] ,

mY,X [·] = m[·] in this case. Moreover, we will use the Euclidean 2- norm for ∥ · ∥X ,

which will be simply denoted as ∥ · ∥, and from [55], it can be shown that M [·] = m[·]

and for u,v ∈ Rn,

M [F] = sup
u̸=v

⟨u− v,F(u)− F(v)⟩
∥u− v∥2

= sup
u̸=v

(u− v)T (F(u)− F(v))

∥u− v∥2
. (2.6)

We will next consider the notion the motonicity of a vector field, which can further

imply the contractivity for the flow of the vector field.

Definition 2.2.3 A map F defined from X to Y , where Y ⊆ X ⊆ Rn is said to be

uniformly negative monotone if M [F] < 0. For the differential equation: ẏ = F(y),

the map etF : y(0)→ y(t) is a contractive flow if L[etF] < 1.

Remarks

• If F is a uniform negative monotone vector field, i.e. M [F] < 1, then the

corresponding flow etF is contractive. This follow from the fact that L[etF] ≤

et M [F] as given in [55].
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• Contractive property of the flow is often used to guarantee the existence and

uniqueness of (2.1), as well as the exponential stability.

• Suppose y∗ is the zero equilibrium solution, i.e. it satisfies F(y∗) = 0. The

existence of y∗ can be guaranteed when F is uniformly negative monotone or

M [F] < 0. It can be shown that M [F] < 0 implies L[F−1] ≤ − 1
M [F]

< ∞ [55].

That is, there exists an inverse function F−1 so that y∗ = F−1(0).

• The monotonicity is generally used for deriving a bound for perturbation at the

equilibrium of (2.1). In particular, suppose y is the solution of the perturbed

system F(y) = p for p ∈ Rn with small ∥p∥. Then ∥y∗−y∥ ≤ ∥p∥
M [F]

(etM [F]−1).

When F is uniformly negative monotone, i.e. M [F] < 0, we have

∥y∗ − y∥ ≤ − ∥p∥
M [F]

,

which implies that there exists a unique stable equilibrium since ∥y∗ − y∥ → 0

as ∥p∥ → 0.

Next, we will use these notions to derive a form of model reduction that can

preserve the negative monotonicity, and hence provide solutions with contractive flow

as well as the stability [55].
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Chapter 3

PRELIMINARY: Model Reduction

Techniques

This chapter presents two model reduction techniques for nonlinear ordinary dif-

ferential equations (ODEs). First note that, model order reduction aims to reduce

the number of unknowns and not to reduce the order of the derivatives. A common

technique used in dimension reduction is Proper Orthogonal Decomposition (POD)

combined with Galerkin projection. For nonlinear problems, this technique can re-

duced only dimensions of linear term, because POD cannot reduce the complexity of

nonlinear term. Therefore, we combine POD approximation with Discrete Empirical

Interpolation Method (DEIM), which can reduce the complexity of nonlinear term so

that it does not depend on the large dimension of full-order system.
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3.1 Model reduction techniques

The goal of model reduction techniques used in this work is to decrease the dimen-

sion of the discretized systems from nonlinear partial differential equations (PDEs).

The discretization is generally in the form of system of nonlinear ordinary differential

equations (ODEs):

d

dt
y(t) = Ay(t) + F(y(t)), (3.1)

where y(t) = [y1(t), . . . ,yn(t)]
T ∈ Rn is the state variable with initial condition

y(0) = y0 ∈ Rn, t is time, A ∈ Rn×n is a constant matrix, and F is a nonlinear vector-

valued function evaluated at y(t) componentwise. This type of system often arises

from the discretization of nonlinear PDEs. The dimension n, which is the number

of unknowns of this system, is generally required to be very large to obtain accurate

numerical solution. In this work, we will call (3.1) as original full-order system or

full-order system of dimension n, which will be costly to compute in practice. We

can reduce the computational complexity and simulation time by using the following

methods.

3.2 Projection-based model order reduction

Projection-based method can construct a reduced-order system by projecting (3.1)

onto a low dimensional subspace. Let Vk ∈ Rn×k be a matrix whose columns form a

set of an orthonormal basis of dimension k, where k < n. Then, we can approximate
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the state variable y(t) in the space spanned by the columns of Vk, i.e.

y(t) ≈ Vkỹ(t), (3.2)

where ỹ(t) ∈ Rk. By substituting (3.2) into (3.1), we obtain the following reduced

system with k unknows in ỹ(t).

d

dt
Vkỹ(t) = AVkỹ(t) + F(Vkỹ(t)), (3.3)

with initial condition

Vkỹ(0) = y0. (3.4)

Then, applying the Galerkin projection which will give the smallest error of the

residual in the direction of span{Vk}. The POD reduced system is of the form:

VT
k

d

dt
Vkỹ(t) = VT

kAVkỹ(t) +VT
kF(Vkỹ(t)), (3.5)

and the initial condition (3.4) of the POD reduced system becomes

VT
kVkỹ(0) = VT

k y0. (3.6)
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Since VT
kVk = Ik, (3.3) and (3.4) can be written as

d

dt
ỹ(t) = VT

kAVk︸ ︷︷ ︸
Ã

ỹ(t) +VT
kF(Vkỹ(t)), (3.7)

ỹ(0) = VT
k y0, (3.8)

where Ã = VT
kAVk ∈ Rk×k can be precomputed because it does not depend on time

and (3.7) is called POD reduced system. In this setting, Vk can be obtained from any

orthogonal basis. However, to get a good approximation from this reduced system,

we will consider the basis constructed by Proper Orthogonal Decomposition (POD)

which will be described in Section 3.3.

3.3 Proper Orthogonal Decomposition (POD)

This section considers the procedure of POD. In 1937, John Lumley initially pro-

posed POD in the context of inhomogeneous structure turbulent flows[?] and stochas-

tic tools in turbulence (1970)[41]. POD is also known by other names, for example,

Karhunen-Love decomposition (KLD), Principal Component Analysis (PCA), or Sin-

gular Value Decomposition (SVD). POD has been used in many applications, e.g.

[13, 39, 36, 54, 30]. We will next consider construct a low dimensional by using POD

with the Galerkin projection.
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3.3.1 POD basis

The aim of POD is to construct a set of global basis functions by extracting basis

that describes the main dynamics from the system of interest, which can be obtained

by the singular value decomposition (SVD) of solutions or snapshots:Y ∈ Rn×ns .

The singular value decomposition of a rectangular matrix Y ∈ Rn×ns is given by the

following theorem.

Theorem 3.3.1 (Singular value decomposition,[28]) Let Y = [y1, . . . ,yns ] ∈

Rn×ns be a snapshot matrix of rank r with yi
∼= y(ti), ti ∈ I, i = 1, . . . , ns. Then there

exists a decomposition of the form

Y = Û


σ1 0

. . .

0 σr

ZT = ÛΣZT (3.9)

where Û ∈ Rn×r and Z ∈ Rns×r are orthogonal matrices and Σ = diag(σ1, . . . , σr) ∈

Rr×r. The columns in Û = [u1, . . . ,un] are called the (left) singular vectors of Y and

for the singular values σi it holds: σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Proof: The formal derivation can, for example, be found in [28]. �

Notice that, for the SVD of Y = ÛΣZT , the following diagonalization holds

YYT = (ÛΣZT )(ÛΣZT )T = ÛΣ2ÛT , (3.10)
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and therfore, the columns of Û are eigenvectors of the matrix YYT with corre-

sponding eigenvalues λi = σ2
i > 0, i = 1, . . . , r.

Next, the calculation of POD basis can be done by using the following steps in

Algorithm 1.

Algorithm 1 Algorithm to create POD basis

INPUT: {yj}ns
j=1 is the snapshots.

OUTPUT: Vk is POD basis.

1: Create snapshots: Y = [y1, . . . ,yns ] ∈ Rn×nsand Let r = rank(Y)
2: Compute by using SVD: Y = ÛΣZT

3: POD basis: Vk = [v1, . . . ,vk] = Û(:, 1 : k)

From POD basis Algorithm 1, we create first the snapshots which are the solutions

in the different time steps. Then, we find POD basis Vk from the snapshots by

using SVD or POD. Likewise, in the case of nonlinear term, we find POD basis from

Algorithm 2.

Algorithm 2 Algorithm to create POD basis for varying parameters

INPUT: {F(y(tj))}nt
j=1 is the snapshots.

OUTPUT: Um is POD basis.

1: Create snapshots: {F(y(tj))}nt
j=1, and Let r = rank({F(y(tj))}nt

j=1) where y(t) =
[y1(t), . . . ,yns(t)]

T ∈ Rns

2: Compute by using SVD: {F(y(tj))}nt
j=1 = ÛΣZT

3: POD basis: Um = [u1, . . . ,um] = Û(:, 1 : m)

One of the most important properties of POD is that it can construct an approxi-

mation that minimizes the error in 2−norm for a given fixed basis rank. More details

on this will be discussed next in Section 3.3.2.
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3.3.2 POD error

We have presented the computation for a POD basis by using SVD. Alternately,

it can be shown that the POD basis matrix Vk is the solution to the following opti-

mization problem (3.12)

Theorem 3.3.2 (POD basis,[59]) Let Y ∈ Rn×ns be a snapshot matrix Y = [y1, . . . ,yns ]

with rank r ≤ min{n, ns}. Further, let Y = ÛΣZT be the singular value decomposi-

tion of Y with orthogonal matrices Û = [u1, . . . ,un] and Ẑ = [z1, . . . , zns ] as in (3.9).

Then, for any ℓ ∈ {1, . . . , r} the solution to the optimization problem

max
φi,...,φℓ

ℓ∑
i=1

ns∑
j=1

∥⟨yj, φi⟩∥2 s.t. ⟨φi, φj⟩ = φT
i , φj = δi,j for 1 ≤ i, j ≤ ℓ (3.11)

is given by the left singular vectors {ui}ℓi=1. The set of vectors φ1, . . . , φℓ are called

the POD basis of rank ℓ. Here, δi,j =


1, if i ̸= j

0, if i = j

, for 1 ≤ i, j ≤ ℓ denotes

the Kronecker delta.

Proof: The proof is given in [[59], p. 5-6] �

Moreover, the optimization problem (3.12) will have minimum error when the

POD basis approximation yj
∼= VkV

T
k yj is used for j = 1, . . . , ns. This error is given
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by
ns∑
j=1

∥yj −VkV
T
k yj∥22 =

r∑
ℓ=k+1

σ2
ℓ , (3.12)

which is the sum of the neglected singular values σk+1, . . . , σr from SVD of Y =

[y1, . . . ,yns ]. We can proof by the method of low-rank approximation which can be

found in [59].

Although we use POD to reduced the number of unknowns of the full-order system

and POD can reduce the large dimension of linear term, it cannot reduce computa-

tional complexity for nonlinear term, which may still depend on the full dimension for

VT
kF(Vkỹ(t)) from (3.7). For this reason, we will combine POD aprroximation with

Discrete Empirical Interpolation Method (DEIM), which will be described in Section

3.4.

3.4 Discrete Empirical Interpolation Method (DEIM)

This section considers the nonlinear term VT
kF(Vkỹ(t)) in (3.7). Notice that the

computational complexity for evaluating this term still depends on the full dimension

n. To eliminate this dependence, we combine POD approximation with the Discrete

Empirical Interpolation method (DEIM), which is recently proposed in [9, 21]. DEIM

has been used in many applications such as 1-D FitzHugh-Nagumo equations with

morphological structure spiking neurons [33], non-linear miscible viscous fingering in

a 2-D porous medium [20], 2-D shallow-water equations [24], four-dimensional vari-
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ational data assimilation [56], three-dimensional nonlinear aeroelasticity model [27],

and some extension to DEIM such as electrical, thermal, and microelectromechanical

Systems [32]. We first consider VT
kF(Vkỹ(t)) in the form

F(Vkỹ(t)) = f(t) (3.13)

and

N(t) = VT
kF(Vkỹ(t)). (3.14)

Estimate (3.13) by projecting f(t) onto subspace span{U} of the form

f(t) ≈ Uc(t) (3.15)

where U = [u1, . . . ,um] ∈ Rn×m is the projection basis with m ≪ n. The basis

matrix U can be found by using SVD of [F(y1), . . . ,F(yns)],yi
∼= y(ti). Then we can

calculate c(t) from the following interpolation method. First, consider matrix

P = [e℘1 , . . . , e℘m ] ∈ Rn×m (3.16)

where e℘i
= [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn is the ℘i-th column of the identity matrix

In ∈ Rn×n, for i = 1, . . . ,m, for selecting m rows of U. Then assume that PTU is



22

nonsingular and solve for c(t) from

PT f(t) = (PTU)c(t) (3.17)

so,

c(t) = (PTU)−1PT f(t). (3.18)

Finally, the approximation is given by

F(VkỸ(t)) = f(t) ≈ Uc(t) = U(PTU)−1 PTF(Vkỹ(t))︸ ︷︷ ︸
m×1

. (3.19)

In the case when the nonlinear function F is componentwise, we have

F(VkỸ(t)) = f(t) ≈ Uc(t) = U(PTU)−1 F(PTVkỹ(t))︸ ︷︷ ︸
m×1

. (3.20)

Note that, multiplying PT in (3.17) is equivalent to extracting them rows correspond-

ing to the interpolation indices ℘1, . . . , ℘m, which are used in (3.16). The procedure

for selecting these indices is shown next.

3.4.1 DEIM: algorithm for interpolation indices

Discrete Empirical Interpolation Method (DEIM) estimates nonlinear term by

finding projection basis from POD and selecting the interpolation indices by a greedy

algorithm. The interpolated indices ℘1, . . . , ℘m, can be obtained form the following
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DEIM algorithm [21].

Algorithm 3 Algorithm to create for Interpolation Indices DEIM

INPUT: {uℓ}mℓ=1 ⊂ Rn linearly independent
OUTPUT: ℘⃗ = [℘1, . . . , ℘m]

T ∈ Rm

1: [|ρ|, ℘1] = max{|u1|}
2: U = [u1],P = [e℘1 ], ℘⃗ = [℘1];
3: for ℓ← 2 to m do
4: Solve (PTU)c = PTuℓ;
5: r = uℓ −Uc [|ρ|, ℘ℓ] = max{|r|}

6: U← [U uℓ],P← [P e℘ℓ
], ℘⃗←

[
℘⃗
℘ℓ

]
7: end

The aim of DEIM algorithm is to select the interpolation indices so that the

approximation has smallest error r = uℓ −Uc in each interation ℓ. The procedure

of DEIM algorithm 3 is as follows: First, we start with a basis of rank m, which can

be obtained by using POD of nonlinear term. Then, select the index of a component

in the first basis vector u1 with the largest absolute value. Next, we select the other

indices so that we have minimum residual error r = uℓ −Uc in each step.

3.4.2 DEIM error

The corresponding error of DEIM approximation defined formally in Definition

3.4.1 was proposed in [21] as shown in Theorem 3.4.2. The extension of this error

bound of to the state-space error estimate can be found in [17].

Definition 3.4.1 (DEIM approximation) Let f : D 7→ Rn be a nonlinear vector-

valued function with D ⊂ Rd for some positive integer d. Let {uℓ}mℓ=1 ⊂ Rn be a
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linearly independent set for ℓ ∈ {1, . . . ,m}. For t ∈ D, the DEIM approximation of

order m for f(t) in the space spanned by {uℓ}mℓ=1 is given by

f̂(t) = U(PTU)−1PT f(t), (3.21)

where U = [u1, . . . ,um] ∈ Rn×m and P = [e℘1 , . . . , e℘m ] ∈ Rn×m, with {℘1, . . . , ℘m}

being the output from Algorithm 3 with the input basis {ui}mi=1.

Theorem 3.4.2 (Error bound of DEIM approximation, [21]) Let f ∈ Rn be

arbitrary vector. Let {uℓ}mℓ=1 ⊂ Rn be a given orthonormal set of vectors. From Def-

inition 3.1, the DEIM approximation of order m ≤ n for f in the space spanned

by {uℓ}mℓ=1 is f̂ = U(PTU)−1PT f , where U = [u1, . . . ,um] ∈ Rn×m and P =

[e℘1 , . . . , e℘m ] ∈ Rn×m, with {℘1, . . . , ℘m} being the output from Algorithm 2.3 with

the input basis {ui}mi=1. An error bound for f̂ is then given by

∥f − f̂∥2 ≤ CE∗(f), (3.22)

where

C = ∥(PTU)−1∥2 and E∗(f) = ∥(I−UUT )f∥2 (3.23)

is the error of the best 2-norm approximation for F from the space Range(U).

Next chapter will use the concept of POD-DEIM approach discussed here to obtain

a reduced model that preserves monotonicity and contractivity properties.
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Chapter 4

STRUCTURE -PRESERVING

MODEL REDUCTION

Model reduction techniques with certain structure that can preserve the mono-

tonicity and contractivity of the original system will be derived. As stated earlier,

the monotonicity and contractivity can be used to guaranteed the stability, as well as

the existence and uniqueness of the equilibrium solution for each dynamical system.

It can also be used to derive an error bound of the perturbed solution. We will next

provide the conditions in which the reduced systems from POD and POD-DEIM ap-

proaches preserve the monotonicity property of the original system. It will be shown

that while POD reduced systems always preserve the monotonicity of the original

system, this may not be true for POD-DEIM reduced systems. We therefore derive

some modifications for POD-DEIM reduced systems that preserve the monotonicity.
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4.1 Proposed General Form

Recall that a dynamical system in a general form, with state variable y ∈ Rn,

dy

dt
= F(y) (4.1)

is contractive if the vector field F is uniformly negative monotone, i.e. the logarithmic

Lipschitz constant of F is negative, M [F] < 0. An equivalent definition of logarithmic

Lipschitz constant in Euclidean space [55], which will be used in the derivation, is

given by: for u,v ∈ Rn,

M [F] = sup
u̸=v

⟨u− v,F(u)− F(v)⟩
∥u− v∥2

= sup
u̸=v

(u− v)T (F(u)− F(v))

∥u− v∥2
. (4.2)

We propose the following general form of reduced systems that can preserve the

monotonicity and contractivity of the original system (4.1):

˙̃y = F̃(ỹ), with F̃(ỹ) = VTWF(WTVỹ) (4.3)

where ỹ = ỹ(t) ∈ Rk, W ∈ Rn×n and V ∈ Rn×k, for k ≪ n, t ≥ 0 and the solution

y of the original full-order system is approximated by Vỹ.

Note that the matrix W is introduced to allow the reduced system to cooper-

ate additional efficient nonlinear complexity reduction as explained later in the next

section.
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Lemma 4.1.1 Suppose the nonlinear vector field F in (4.1) is uniformly negative

monotone. Then the nonlinear vector field F̃(ŷ) given in (4.3) is also uniformly

negative monotone if W̃TW̃ = I where W̃ = WTV and I is a k-by-k identity matrix.

Proof: Let M [F] and M [F̃] be the logarithmic Lipschitz constants of F and F̃,

respectively. For ũ, ṽ ∈ Rk and u,v ∈ Rn, since F in system (1) is uniformly negative

monotone, i.e. M [F] < 0, then

M [F̃] = sup
ũ̸=ṽ

(ũ− ṽ)T (F̃(ũ)− F̃(ṽ))

∥ũ− ṽ∥2

= sup
ũ̸=ṽ

(ũ− ṽ)T (W̃TF(W̃ũ)− W̃TF(W̃ṽ))

∥ũ− ṽ∥2

= sup
ũ̸=ṽ

(W̃ũ− W̃ṽ)T (F(W̃ũ)− F(W̃ṽ))

∥W̃ũ− W̃ṽ∥2

≤ sup
u̸=v

(u− v)T (F(u)− F(v))

∥u− v∥2

= M [F] < 0,

where W̃ = WTV. That is, M [F̃] < 0 and F̃ is uniformly negative monotone. �

4.2 Structure-Preserving POD reduced system

In order to derive a reduced-order modeling in the form (4.3) that is useful in

practice, we will first consider a well-known method called proper orthogonal decom-

position (POD) as a starting point. In particular, the POD reduced system for the
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original system (2.1) is given by

˙̃y = VTF(Vỹ), ỹ(0) = VTy0, (4.4)

where the basis matrix V ∈ Rn×k, called POD basis, can generally capture the main

characteristic of the solutions [47]. This basis can be computed via the singular value

decomposition (SVD) of the snapshots, which are the sampled solutions at certain

time steps or parameter values. The POD reduced system can be written in the

form of (4.3) by setting W = I. As a result, POD reduced system preserves the

monotonicity of the original system. In addition, we can obtain the following result.

Corollary 4.2.1 Suppose the nonlinear vector field F in system (4.1) is uniformly

negative monotone. Then the reduced systems in the form (4.3) has the following

properties.

(i) The reduced system (4.3) preserves the exponential stability of (4.1) .

(ii) The reduced system (4.3) has a unique equilibrium ỹe, i.e. F̃(ỹe) = 0. Moreover,

if ye is the unique equilibrium solution of (4.1), then ye can be approximated by Vỹe

with the error bound

∥ye −Vỹe∥ ≤
−∥p∥
M [F]

, where p = F(Vỹe).

Proof: (i) Since, from [55], the solution of the reduced system satisfies ∥ỹ∥ ≤

eM [F̃]t∥ỹ(0)∥ and M [F̃] < 0 for t ≥ 0.
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(ii) First note that , from [55], M [F] < 0 implies that the map F is bijective and

there must be a unique solution ye such that F(ye) = 0. Similarly, from Lemma

4.1.1, M [F] < 0 implies M [F̃] < 0, which also further gives the existence of the

unique solution ỹe such that F̃(ỹe) = 0. To derive the bound, let p := F(Vỹe) and

consider ⟨Vỹe−ye,F(Vỹe)−F(ye)⟩
∥Vỹe−ye∥2 ≤M [F]. Since M [F] < 0,

∥Vỹe − ye∥2 ≤
1

M [F]
⟨Vỹe − ye,p⟩

≤
∣∣∣∣ 1

M [F]

∣∣∣∣ ∥Vỹe − ye∥ ∥p∥

=
−∥p∥
M [F]

∥Vỹe − ye∥

∥Vỹe − ye∥ ≤
−∥p∥
M [F]

.

�

Although the number of unknowns is reduced to k, the complexity for computing

VTF (Vŷ) for each t still depends on the original dimension n. That is, POD may

not truly reduce the complexity of nonlinear dynamical system as explained in [19].

An efficient way to overcome this problem is to further apply the discrete empirical

interpolation (DEIM).
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4.3 Structure-Preserving POD-DEIM reduced sys-

tem

Recall that the POD-DEIM reduced system can be written in the following form:

˙̃y = VTU(PTU)−1PTF(Vỹ), ỹ(0) = VTy0, (4.5)

where V ∈ Rn×k is the POD basis matrix of rank k obtained from the solution

snapshots, U ∈ Rn×m is the POD basis matrix of rank m, m ≪ n, obtained from

the nonlinear snapshots of F, and P ∈ Rn×m is the matrix corresponding to the

interpolated indices in the nonlinear approximation as described in [19]. The term

VTU(PTU)−1 can be precomputed in advance and multiplying by PT is equivalent to

selecting the m components. Hence, in the actual computation for solving the POD-

DEIM reduced system, the complexity depends only on small dimensions k and m.

Notice that, although the POD-DEIM reduced system can decrease the computational

time for nonlinear problem, it may not always preserve some important properties of

the original system.

The following proposition provides the condition that guarantee the uniform neg-

ative monotonicity, and hence the contractivity as well as stability, of the resulting

POD-DEIM reduced system.

Proposition 4.3.1 The nonlinear vector field of the POD-DEIM reduced system

(4.5) is uniformly negative monotone if M [PF] < 0, where P = U(PTU)−1PT and F
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is defined in (4.1) .

Proof: Consider the POD-DEIM reduced system (4.5) in the form ˙̃y = F̂(ỹ) where

F̂(ỹ) := VTPF(Vỹ),

M [F̂] = sup
û ̸=v̂

(û− v̂)T (VTPF(Vû)−VTPF(VT v̂))

∥û− v̂∥2

= sup
û ̸=v̂

(Vû−Vv̂)TP(F(Vû)− F(Vv̂))

∥Vû−Vv̂∥2

≤ M [PF].

That is, M [PF] < 0 implies M [F̂] < 0. �

Next, this work proposes a specific form for constructing a reduced-order model

with the structure given in (4.3), which can efficiently reduce the computational

complexity of the nonlinear term. This form is based on the form of POD-DEIM

reduced system: ˙̃y = VTPF(Vỹ), where P = U(PTU)−1PT . We can obtain the form

(4.3) by setting W = P so that the reduced system becomes

˙̃y = VTPF(PTVỹ), ỹ(0) = VTy0. (4.6)

It is possible to use other variations that fit the general form given in (4.3), e.g. using

W = PPT where P is the selection matrix obtained from the DEIM procedure. That

is, let V℘ = PPTV, the reduced system is in the form:

˙̃y = VT
℘F(V℘ỹ), ỹ(0) = VTy0 (4.7)
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We next illustrate the accuracy and efficiency of the proposed reduced model (4.6)

through a nonlinear differential equations that describes a diffusion-reaction problem.

To improve the accuracy, the linear and the nonlinear terms will be separated in

actual computation. In particular, for F(y) = Ay+ f(y), where A ∈ Rn×n, the POD

approach will be applied to the linear term Ay and reduced system of the form (4.8)

will be used for the nonlinear term f(y), i.e.

˙̃y = Ãỹ + Pf(PVỹ), (4.8)

where Ã = VTAV ∈ Rk×k can be precomputed in advance.
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Chapter 5

Numerical Results

In this work, we consider two numerical tests on a nonlinear diffusion reaction

model. The first numerical test considers only one fixed parameter value. The second

one considers the case of varying parameter values.

5.1 Reaction-Diffusion Model

Consider the nonlinear reaction-diffusion initial boundary value problem:

∂u

∂t
= ϵ

∂2u

∂x2
+ u− u3, x ∈ Ω = [0, 2π] , t ≥ 0, (5.1)

with initial condition : u(x, 0) = 0.25 sin(x), and homogeneous boundary conditions :

u(0, t) = 0, u(2π, t) = 0, for t ≥ 0. In the following numerical tests, we use finite

different discretizaion with spatial point n = 600 on [0, 2π], time steps = nt = 700
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on [0, 5] and ϵ = 0.01. Figure 5.1 compares the solutions obtained from the original

full-order system of the form (2.1) with the ones from the two reduced models: (i) the

POD reduced system (4.4), and (ii) the POD-DEIM reduced system that preserves

the monotonicity (4.8), which are indistinguishable. The absolute error and the CPU

time (normalized with the simulation time of the original full-order system) of these

2 reduced models (4.4) and (4.8) that preserve monotonicity are given in Table 5.1.

Notice that, although the POD give more accurate approximations, the proposed

model can accurately approximate the solution with much less simulation time, e.g.

POD-DEIM reduce system with k = 30, m = 30 has CPU time reduced to 0.0024 ≈

1/400 of the simulation time used for the original system, while CPU time for POD

with k = 30 is only reduced to 0.4781 ≈ 1/2 of the time used in the original system.

Figure 5.1: Solutions of (5.1) from the full-order system (2.1), the POD system (4.4) with
k = 30, and the POD-DEIM system that preserves monotonicity (4.8) with k = m = 30.
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POD Relative Runtime

basis (k) Error (scaled)

Full: n = 600 - 1

k = 10 2.4601e-06 0.4433
k = 20 3.7046e-07 0.4569
k = 30 1.7271e-07 0.4781
k = 40 1.0819e-07 0.4896
k = 50 3.3184e-08 0.4931

DEIM (m) Relative Runtime

POD k = 30 Error (scaled)

Full: n = 600 - 1

m = 10 4.1170e-02 0.0021
m = 20 6.2412e-03 0.0022
m = 30 4.1483e-03 0.0024
m = 40 5.4461e-04 0.0029
m = 50 1.4553e-04 0.0031

Table 5.1: Runtime and relative error of the POD reduced system (left) the POD-DEIM
reduced system with monotonicity preserved (right). Each runtime is normalized with the
CPU time of the original full-order system (dimension n = 600).

5.2 Numerical Example: Varying parameters

This section considers an application for the same nonlinear reaction-diffusion

equation with different initial conditions and using various different values of ϵ:

∂u

∂t
= ϵ

∂2u

∂x2
+ u− u3, x ∈ Ω = [0, 1] , t ≥ 0, (5.2)

The initial condition is u(x, 0) = sin(5πx), the homogeneous boundary conditions

are u(0, t) = 0, u(1, t) = 0, for t ≥ 0. The finite difference discretization is used

with spatial point n = 1000 on [0, 1] and the number of time steps is = nt = 100 on

[0, 2] .

The three plots in Figure 5.3 illustrate, respectively, the full-order solutions with

the parameter values ϵ = 0.001 and ϵ = 0.1 and the singular values, which are

corresponding to the POD basis of the solution snapshots from these two parameters.

The POD basis sets for projecting the solution and for the DEIM nonlinear ap-

proximation are constructed from the solution snapshots shown in Figures 5.3, which
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Figure 5.2: Solutions of (5.2) from the full-order system (n = 1000, ϵ = 0.01)

Figure 5.3: Solution Snapshots of (5.2) (n = 1000) with ϵ = 0.001 and ϵ = 0.1.

Figure 5.4: Solutions of (5.2) from the full-order system (n = 1000) with parameter
ϵ = 0.0025, 0.005, 0.0250.05.

are corresponding to 2 parameter values ϵ = 0.001 and ϵ = 0.1. This numerical

test considers the solutions corresponding to different parameter values. Figures 5.4,

5.5, 5.6 demonstrate, respectively, the solutions from the full-order system, the POD
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Figure 5.5: Solutions of (5.2) from the POD reduced system (n = 1000) with parameter
ϵ = 0.0025, 0.005, 0.0250.05.

Figure 5.6: Solutions of (5.2) from the structure-preserving POD-DEIM reduced system
(n = 1000) with parameter ϵ = 0.0025, 0.005, 0.0250.05.

reduced system, and the structure-preserving POD-DEIM reduced system with pa-

rameter ϵ = 0.0025, 0.005, 0.0250.05. The solutions from the POD reduced system

in Figure 5.5 are shown to accurately capture the dynamics of the original systems

although the projection basis sets employ snapshots from different parameter values.

Similar observations can be obtained from the solutions from the structure-preserving

POD-DEIM reduced system in Figure 5.6. Note however, that the simulation time

of the POD reduced systems is roughly a factor of 1/30 less than the simulation time

used for the original full-order system while the structure-preserving POD-DEIM

reduced system can further the simulation time approximately to a factor of 1/200.



Chapter 6

Conclusions

This work proposes a general form of nonlinear reduced-order modeling that pre-

serves the contractivity and monotonicity properties of the original systems, which

can be used for guaranteeing the existence, uniqueness of the solution, and stability

of the dynamical system. A specific formulation presented and used in this work

is based on proper orthogonal decomposition (POD) and discrete empirical inter-

polation method (DEIM) approaches with some modification. Other specific forms

are still possible and left for future research. An error bound for the approximate

equilibrium solution from the proposed reduced system is also derived. This work

investigates the monotonicity and contractivity of the existing POD and POD-DEIM

techniques. It can be shown that POD reduced systems always preserve the mono-

tonicity and contractivity of the original system, but POD-DEIM systems do not.

The conditions under which the POD-DEIM approach preserves monotonicity and

38
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contractivity properties are provided.

The numerical tests on the nonlinear reaction diffusion problem demonstrate that,

while preserving negative monotonicity, the proposed model can accurately approxi-

mate the solutions with much less simulation time.
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Electrophysiology. Theses, Université Pierre et Marie Curie - Paris VI, November

2014.
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Nonlinear Reduced-Order Modeling with Monotonicity
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Abstract. This work proposes a general form of nonlinear model reduction approach that preserves the monotonicity property
of the original full-order model, which can be used to guarantee the existence and uniqueness of the solution. The derivation of
the proposed methodology is based on using basis from proper orthogonal decomposition method and modifying an interpolatory
projection approach, called discrete empirical interpolation method, by enforcing a symmetric structure of the approximation. The
efficiency and accuracy of the proposed method are illustrated through the numerical tests on a nonlinear model describing reaction
diffusion problems.

INTRODUCTION

A number of physical phenomena can be described by nonlinear partial differential equations (PDEs), which may
not be solved analytically in general, and it is therefore unavoidable to use approximate solutions instead. These
solutions are often obtained from numerical methods that require certain spatial discretization. Increasing the accuracy
of the resulting numerical solutions normally leads to a discretized system with a very large state-space dimension.
An efficient approach for decreasing the computational cost in solving these large-scale systems is based on the
model reduction concept, which can generate a comparatively low dimensional problem with accurate approximations.
Model reduction approaches have been recently proposed to substantially decrease the computational complexity
of many large-scale discretized PDEs. However, most existing efficient approaches for nonlinear systems may not
directly preserve the important properties of the original systems.

This work focuses on projection-based model reduction approaches, called proper orthogonal decomposition
(POD) and discrete empirical interpolation method (DEIM). POD is a well-known method and has been successfully
used in a large number of previous works, e.g. [1, 2, 3], to reduce the dimension of the original systems. However,
computing the projected nonlinear term in the POD reduced system generally still depends on the large dimension
of original system. To overcome this difficulty, DEIM approach [4] can be used to further reduced the computational
complexity of the nonlinear term by selecting the interpolation indices through a greedy algorithm.

Although the approach that combines POD and DEIM has been efficiently applied in various applications, e.g.
[5, 6], it may not preserve the important properties of the original system. This work proposes a nonlinear reduced-
order modeling that preserves the monotonicity, which can be used to guarantee the existence and uniqueness of the
reduced-order solution, as well as provide certain conditions that preserve the stability of the original system. The
derivation of the proposed methodology is based on modifying the POD-DEIM approach by enforcing a symmetric
structure of the system. A nonlinear reaction diffusion problem is used to test the efficiency of this new approach.

BACKGROUND AND PROBLEM FORMULATION
Consider the system of nonlinear ordinary differential equations (ODEs) of the form:

dy
dt
= F(y), y(0) = y0, (1)
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where y = y(t) is an n dimensional vector at certain time t ≥ 0 and F is a differentiable nonlinear vector field in
y variable with Jacobian of F given by JF(y) = ∂F

∂y (y). The goal is to construct a reduced system that can provide

approximate solutions that preserve the behavior of the original system.
This section first considers the logarithmic norm, introduced independently by Germund Dahlquist and Sergei

Lozinskii in 1959 [7, 8] defined as μ(A) = lim
h→0+

‖I+hA‖−1
h , which can be used to measure the distance between matrices.

Note that ‖ ·‖ can be any norm and when it is the Euclidean 2-norm, μ(A) is the maximum eigenvalue of the symmetric
part of A. This notion can be extended to the nonlinear operator in Banach spaces as shown next [9].

Definition 1 Let (X, ‖ · ‖X) be a normed space and f : Y → X be a function where Y ⊆ X. The least upper
bound (lub) and the greatest lower bound (glb) Lipschitz constants of f induced by the norm ‖ · ‖X on Y are defined,
respectively, by LY,X[ f ] = supu�v∈Y

‖ f (u)− f (v)‖X
‖u−v‖X , and �Y,X[ f ] = infu�v∈Y

‖ f (u)− f (v)‖X
‖u−v‖X .

The least upper bound (lub) and the greatest lower bound (glb) logarithmic Lipschitz constants of f induced by
the norm ‖ · ‖X on Y are defined by

MY,X[ f ] = lim
h→0+

LY,X[I + h f ] − 1

h
, and mY,X[ f ] = lim

h→0−

LY,X[I + h f ] − 1

h
.

Note that, this work considers the setting for systems of ODEs with X = Y ⊆ Rn and we will use the notation
LY,X[·] = L[·], �Y,X[·] = �[·] and MY,X[·] = M[·] , mY,X[·] = m[·]. Moreover, we will use the Euclidean 2- norm for ‖ · ‖X ,
which will be simply denoted as ‖ · ‖, and from [9], it can be shown that M[·] = m[·]. In this case,

M[F] = sup
u�v

〈u − v,F(u) − F(v)〉
‖u − v‖2 = sup

u�v

(u − v)T (F(u) − F(v))

‖u − v‖2 (2)

for u, v ∈ Rn. We will next consider the notion of the motonicity of a vector field, which can further imply the
contractivity for the flow of the vector field.

Definition 2 A map F defined from X to Y, where Y ⊆ X ⊆ Rn is said to be uniformly negative monotone if
M[F] < 0. For the differential equation: ẏ = F(y), the map etF : y(0)→ y(t) is a contractive flow if L[etF] < 1.

In the next section, we will use these notions to derive a form of model reduction that can preserve the negative
monotonicity, and hence provide solutions with contractive flow as well as the stability [9].

PROPOSED MODEL REDUCTION FORMULATION

We consider the following general form of reduced systems that can preserve the monotonicity and contractivity of
the original system (1).

˙̃y = ˜F(ỹ), with ˜F(ỹ) = VT WF(WT Vỹ) (3)

where ỹ = ỹ(t) ∈ Rk, W ∈ Rn×n and V ∈ Rn×k, for k 	 n, t ≥ 0 and the solution y of the original full-order system is
approximated by Vỹ.

Suppose the nonlinear vector field F in (1) is uniformly negative monotone, i.e. M[F] < 0. It can be shown using

the definitions given earlier that the logarithmic Lipschitz constants M[˜F] < 0 where ˜F is the vector field in (3). For
ũ, ṽ ∈ Rk, since M[F] < 0, then

M[˜F] = sup
ũ�ṽ

(ũ − ṽ)T (˜WT F(˜Wũ) −˜WT F(˜Wṽ))

‖ũ − ṽ‖2 = sup
ũ�ṽ

(˜Wũ −˜Wṽ)T (F(˜Wũ) − F(˜Wṽ))

‖˜Wũ −˜Wṽ‖2 ≤ M[F] < 0

where˜W =WT V. That is, M[˜F] < 0. This observation is summarized in the next lemma.

Lemma 1 If the nonlinear vector field F in (1) is uniformly negative monotone, then so is the nonlinear vector
field ˜F(ŷ) given in (3).
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Note that when F in (1) is uniformly negative monotone, using the standard analysis for differential equations [9] with
the definitions of monotonicity and contractivity gives the following implications.
(i) The reduced system (3) preserves the exponential stability of (1).
(ii) The reduced system (3) has a unique equilibrium.

In order to derive a reduced-order modeling in the form (3) that is useful in practice, we will first consider a
well-known method called proper orthogonal decomposition (POD) as a starting point. In particular, the POD reduced
system for the original system (1) is given by

˙̃y = VT F(Vỹ), ỹ(0) = VT y0, (4)

where the basis matrix V ∈ Rn×k, called POD basis, can generally capture the main characteristic of the solutions
[10]. This basis can be computed via the singular value decomposition (SVD) of the snapshots, which are the sampled
solutions at certain time steps or parameter values. The POD reduced system can be written in the form of (3) by setting
W = I. As a result, POD reduced system preserves the monotonicity of the original system. However, although the
number of unknowns is reduced to k, the complexity for computing VT F(Vŷ) for each t still depends on the original
dimension n. That is, POD may not truly reduce the complexity of nonlinear dynamical system as explained in [4].
An efficient way to overcome this problem is to further apply the discrete empirical interpolation (DEIM). The POD-
DEIM reduced system can be written in the following form:

˙̃y = VT U(PT U)−1PT F(Vỹ), ỹ(0) = VT y0, (5)

where V ∈ Rn×k is the POD basis matrix of rank k obtained from the solution snapshots, U ∈ Rn×m is the POD basis
matrix of rank m, m 	 n, obtained from the nonlinear snapshots of F, and P ∈ Rn×m is the matrix corresponding to the
interpolated indices in the nonlinear approximation as described in [4]. The term VT U(PT U)−1 can be precomputed
in advance and multiplying by PT is equivalent to selecting the m components. Hence, in the actual computation for
solving the POD-DEIM reduced system, the complexity depends only on small dimensions k and m. Notice that,
although the POD-DEIM reduced system can decrease the computational time for nonlinear problem, it may not
always preserve some important properties of the original system. Besides proposing a general form (3) for the model
reduction that preserves the monotonicity and the contractivity of the original system, we also introduce a specific
form for a practical use as shown below.

˙̃y = VT
PF(PT Vỹ), (6)

where P = U(PT U)−1PT . It is clear that setting W = P in (3) will give the above reduced system. To improve the
accuracy, the linear and the nonlinear terms will be separated in actual computation. In particular, for F(y) = Ay+f(y),
where A ∈ Rn×n, the POD approach will be applied to the linear term Ay and reduced system of the form (6) will be
used for the nonlinear term f(y), i.e.

˙̃y = ˜Aỹ + VT
Pf(PT Vỹ), (7)

where ˜A = VT AV ∈ Rk×k can be precomputed in advance. We next illustrate the efficiency of this model reduction
form on a nonlinear reaction-diffusion problem.

NUMERICAL RESULTS

Consider the nonlinear reaction-diffusion initial boundary value problem:

∂u
∂t
= ε
∂2u
∂x2
+ u − u3, x ∈ Ω = [0, 2π] , t ≥ 0, (8)

with initial condition : u(x, 0) = 0.25 sin(x), and homogeneous boundary conditions : u(0, t) = 0, u(2π, t) = 0, for
t ≥ 0. In the following numerical tests, we use finite different discretization with spatial point n = 600 on [0, 2π], time
steps = nt = 700 on [0, 5] and ε = 0.01. Figure 1 compares the solutions obtained from the original full-order system
of the form (1) with the ones from the two reduced models: (i) the POD reduced system (4), and (ii) the POD-DEIM
reduced system that preserves the monotonicity (7), which are indistinguishable. The absolute error and the CPU time
(normalized with the simulation time of the original full-order system) of these 2 reduced models (4) and (7) that
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FIGURE 1. Solutions of (8) from the full-order system (1), the POD system (4) with k = 30, and the POD-DEIM system that

preserves monotonicity (7) with k = m = 30.

TABLE 1. Runtime and relative error of the POD reduced system (left) the POD-DEIM reduced system with monotonic-

ity preserved (right). Each runtime is normalized with the CPU time of the original system (dimension n = 600).

POD basis (k) Error Runtime

10 2.4601e-06 0.4433
20 3.7046e-07 0.4569
30 1.7271e-07 0.4781
40 1.0819e-07 0.4896
50 3.3184e-08 0.4931

DEIM basis (m), with POD k = 30 Error Runtime

10 4.1170e-02 0.0021
20 6.2412e-03 0.0022
30 4.1483e-03 0.0024
40 5.4461e-04 0.0029
50 1.4553e-04 0.0031

preserve monotonicity are given in Table 1. Notice that, although the POD give more accurate approximations, the
proposed model can accurately approximate the solution with much less simulation time, e.g. POD-DEIM reduce
system with k = 30, m = 30 has CPU time reduced to 0.0024 ≈ 1/400 of the simulation time used for the original
system, while CPU time for POD with k = 30 is only reduced to 0.4781 ≈ 1/2 of the time used in the original system.

CONCLUSION

This work proposes a general form of nonlinear reduced-order modeling that preserves the contractivity and mono-
tonicity properties of the original systems, which can be used for guaranteeing the existence, uniqueness of the solu-
tion, and stability of the dynamical system. This formulation is based on POD and DEIM approaches with a minor
modification. The numerical tests on the nonlinear reaction diffusion problem demonstrate that, while preserving
negative monotonicity, the proposed model can accurately approximate the solutions with much less simulation time.
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This work develops a technique for constructing a reduced-order system that

not only has low computational complexity, but also maintains stability of the

original nonlinear dynamical system. The proposed framework is designed to

maintain the contractivity of the vector field in the original system, which can

further guarantee stability preservation, as well as provide error bound for the

approximated equilibrium solution of the resulting reduced system. This tech-

nique employs low-dimensional basis from proper orthogonal decomposition to

optimally capture the dominant dynamics of the original system, and modi-

fies the discrete empirical interpolation method by enforcing certain structure

for the nonlinear approximation. The efficiency and accuracy of the proposed

method are illustrated through the numerical tests on a nonlinear model de-

scribing reaction diffusion problems.
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1. Introduction

Numerical simulations of many natural phenomena described by nonlinear

differential equations can lead to dynamical systems with very large spatial

dimension when a standard discretization scheme is applied. To reduce the

computational cost for solving each of these large-scale systems, model reduc-5

tion methods can be used to produce relatively low dimensional model that still

provides accurate solution of the original system. In general, the accuracy of

a given model reduction technique is evaluated through certain error measure-

ments when compared with some known reference solutions. Besides considering

these approximation errors, this work aims to preserve fundamental behavior10

of the original system, which will be done through contraction analysis. The

contraction property can ensure not only the stability of the systems, but also

the existence and uniqueness of the solution from the reduced system, as well

as provide error bound for the approximated equilibrium solution.

One of the most popular model reduction methods that preserve contraction15

property is a projection-based approach using proper orthogonal decomposition

(POD) with the Galerkin projection, i.e. POD-Galerkin or POD method. This

method is successful in substantially reducing the number of state variables

and has been used in numerous applications, e.g. [1, 2, 3, 4, 5]. However, for

nonlinear systems, the computational complexity of this approach generally still20

depends on the high dimension of the original full-order system since it requires

to compute orthogonal projection of nonlinear terms.

To avoid this inefficiency, new approaches have been proposed to improve the

POD-Galerkin method for nonlinear systems. These approaches include trajec-

tory piecewise-linear (TPWL) method [6, 7], Missing Point Estimation (MPE)25

[8], Discrete empirical interpolation (DEIM) [9]. TPWL approach is based on

estimating a nonlinear function by using linearized approximation constructed

from existing information of the original full-order system. It has been used in

many applications, especially in circuit simulations [10, 11, 7, 12, 13]. However,

not all nonlinear functions can be accurately estimated by linearized approxi-30

2



mations. MPE can reduce the complexity of the POD-Galerkin reduced system

by considering certain selected equations in the discretized system. This ap-

proach was further extended in the form of special inner product [14]. DEIM

can be viewed as an improvement of MPE by combining oblique projection with

interpolatory approximation. The interpolated indices are selected based on a35

greedy algorithm proposed in [15] for the empirical interpolation method (EIM),

which was introduced in function space setting for finite element framework with

projection basis obtained directly from snapshot solutions. An error bound for

the DEIM approximation shown in [9] implies that it is nearly as accurate as

the optimal POD approximation. DEIM has been successfully used with POD40

method for constructing reduced systems in many recent works, such as in neu-

ral modeling of full Hodgkin-Huxley models for realistic spiking neurons [16],

subsurface flows [17, 18], coupled circuit-device systems [19], and reduced order

quadrature algorithm [20].

Despite the success of POD-DEIM approach in various applications, it still45

cannot be proved theoretically to preserve stability and other fundamental prop-

erties of the original systems. In fact, it will guarantee stability in contracitiv-

ity analysis only under certain conditions, as shown later in this work. Existing

model reduction methods aimed to preserve the system properties for only some

special classes of nonlinear dynamical systems, for example, the framework for50

preserving Lagrangian structure of the nonlinear mechanical systems was in-

troduced in [21], and the approach for preserving nonlinear port-Hamiltonian

structure was proposed in [22]. For general cases, only stability for linearized

systems has been considered in [23]. This work focuses on preserving stability

for general nonlinear systems without requiring linearization. In particular, this55

work derives a contractivity-preserving framework for nonlinear vector fields,

which will be shown to maintain important behaviors of the dynamical sys-

tems, such as exponential stability, existence and uniqueness of the solution,

and convergence of perturbed equilibrium. The proposed framework applies the

concept of interpolatory projection-based nonlinear model reduction approach60

using DEIM with certain structured form of the approximated nonlinear term.
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This work is organized as follows. First, the general form of nonlinear dif-

ferential equation and the fundamental notions of contractivity are introduced

in Section 2 . Two projection-based model reduction methods: POD and POD-

DEIM approaches are reviewed in Section 3. Based on these approaches, Sec-65

tion 4 presents the derivation of a model reduction framework that preserves

contractivity of vector field from the original dynamical system. The contractiv-

ity is shown to further imply the stability of the solution, as well as can be used

to obtain an error bound for a perturbed equilibrium solution. This section also

investigates the contractivity property of the existing POD and POD-DEIM70

techniques. It can be shown that POD reduced systems always preserve the

contractivity of the original system, but POD-DEIM systems do not. The con-

ditions under which the POD-DEIM approach preserves contractivity property

are discussed at the end of Section 4. In Section 5, two numerical tests are per-

formed on a nonlinear reaction-diffusion problem to demonstrate the efficiency75

of the proposed framework. The summary of this work and some final remarks

are discussed in Section 6.

2. Problem Formulation and Contractivity

This section provides some theoretical background required for deriving a

model reduction scheme that preserves contractivity of nonlinear dynamical80

systems. The desired form of system structure to be preserved will be discussed

together with its significance.

Consider the system of nonlinear ordinary differential equations (ODEs) of

the form:

dy

dt
= F(t,y), y(0) = y0, (1)

where y = y(t) is an n dimensional state variable at certain time t ≥ 0 and85

F : [0,∞)×Y → Rn is a differentiable nonlinear vector-valued function, Y ⊆ Rn

with the Jacobian given by JF(t,y) =
∂F
∂y (t,y).

We are interested in constructing model reduction that preserves stability

properties of the original system. The standard stability properties are generally

4



analyzed through Lyapunov-based approach. However, a main difficulty for this90

standard analysis often arises as it requires equilibrium points to be specified

in advance. In this work, we consider an alternative stability criterion using

contraction analysis, which is generally easier to analyze but stronger than the

standard one. In particular, while standard nonlinear stability has to be ana-

lyzed with respect to an equilibrium solution, contraction is concerned with the95

behavior of system trajectories with respect to each other and do not require the

prior knowledge of steady-state solution. Contraction analysis considers mainly

a property of the vector field defining the dynamical system.

2.1. Logarithmic norm and Logarithmic Lipschitz constants

We first consider the logarithmic norm, introduced independently by Ger-100

mund Dahlquist and Sergei Lozinskii in 1959 [24, 25]. The definition of loga-

rithmic norm is given next in a special case of Euclidean space.

Definition 2.1. Let A ∈ Rn×n be a constant matrix. The associated matrix

measure, called logarithmic norm is defined as

µ[A] = lim
h→0+

∥I + hA∥ − 1

h
, (2)

where ∥ · ∥ is the standard Euclidean norm.105

In the above definition, ∥ ·∥ can be any norm. When ∥ ·∥ is the Euclidean norm,

it can be shown that [26], µ[A] is the maximum eigenvalue of the symmetric

part of A, i.e.

µ[A] = λmax

(
A+AT

2

)
, (3)

where λmax(·) gives the maximum eigenvalue of the input quantity. Equivalently,

it can also be shown that, for any induced norm in Hilbert space, for u,v ∈ Rn
110

µ[A] = sup
u ̸=v

Re ⟨u− v,Au−Av⟩
⟨u− v,u− v⟩

, (4)

where ∥x∥2 = ⟨x,x⟩, x ∈ Rn.

5



The notion of logarithmic norm has been extended to generalize nonlinear

operator in Banach space by introducing the notion of logarithmic Lipschitz

constants [26]. The definition and some elementary properties of logarithmic

Lipschitz constants are given below.115

Definition 2.2. Let (X, ∥·∥X) be a normed space and F : Y → X be a function

where Y ⊆ X. The least upper bound (lub) and the greatest lower bound

(glb) Lipschitz constants of F induced by the norm ∥ · ∥X on Y are defined,

respectively, by

LY,X [F ] = sup
u̸=v∈Y

∥F (u)− F (v)∥X
∥u− v∥X

, and ℓY,X [F ] = inf
u̸=v∈Y

∥F (u)− F (v)∥X
∥u− v∥X

.

The least upper bound (lub) and the greatest lower bound (glb) loga-

rithmic Lipschitz constants of F induced by the norm ∥·∥X on Y are defined

by

MY,X [F ] = lim
h→0+

LY,X [I + hF ]− 1

h
, and mY,X [F ] = lim

h→0−

LY,X [I + hF ]− 1

h
.

Note that, this work considers the setting for systems of ODEs withX = Y ⊆

Rn and will use the notation LX,X [·] = L[·], ℓX,X [·] = ℓ[·] and MX,X [·] = M [·],

mX,X [·] = m[·]. Moreover, we will use the Euclidean norm for ∥ · ∥X , which will

be simply denoted as ∥ · ∥. In this case, it can be shown [26] that M [·] = m[·]

and for any u,v ∈ Rn,120

M [F ] = sup
u ̸=v

⟨u− v, F (u)− F (v)⟩
∥u− v∥2

= sup
u ̸=v

(u− v)T (F (u)− F (v))

∥u− v∥2
. (5)

Note that, when F = A ∈ Rn×n, µ[A] = M [A].

Lemma 2.3. [27, 28] Let M be the (lub) logarithmic Lipschitz constant induced

by the Euclidean norm on Rn and Y ⊆ Rn be a connected set. Then for any

Lipschitz and continuously differentiable function F : Y → Rn, with Jacobian

JF ,125

sup
y∈Y

M [JF (y)] ≤M [F ]. (6)

6



In addition, if Y is convex, then

sup
y∈Y

M [JF (y)] = M [F ]. (7)

This lemma is useful in practice for estimating or computing M [F ] when the

Jacobian JF is known.

2.2. Contractivity

The definition and related properties of contractivity will be presented next130

for the vector field F of the system of differential equations in (1).

Definition 2.4. [27, 29] The time-dependent vector field F : [0,∞)×Y → Rn,

Y ⊆ Rn, in the system (1), is said to be infinitesimally contracting on a

set Y ⊆ Rn with respect to the Euclidean norm if, for some constant c > 0,

µ[JF(t,y)] ≤ −c, ∀y ∈ Y, ∀t ≥ 0. (8)

where JF(t,y) ∈ Rn×n is the Jacobian of F((t,y). The constant c is called135

contraction rate.

Remark: For F : [0,∞)× Y → Rn, Y ⊆ Rn, recall from Lemma 2.3 that

sup
y∈Y

µ [JF(t,y)] ≤M [Ft], ∀t ≥ 0,

where Ft(y) = F(t,y). That is, the function F is infinitesimally contracting

if the following condition holds true:

sup
t∈[0,∞)

M [Ft] < 0. (9)

In this work, the above stronger condition of being infinitesimally contracting

given in (9) will be used instead of (8) to make it more convenient for applying on140

general nonlinear functions when deriving contractivity-preserving model reduc-

tion approach. For the time-independent function F, i.e. F(t,y) = F(y), ∀t ∈

[0,∞), which will be considered mainly in this work, the condition (9) becomes

simply M [F] < 0. It can be further shown that [30], infinitesimal contractivity

implies global contractivity.145
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Theorem 2.5. [30, 27] Let ∥·∥ be the Euclidean norm and F : [0,∞)×Y → X]

be (globally) Lipschitz and continuously differentiable function, where Y ⊆ X =

Rn. Suppose y and ŷ are the solutions of dy
dt = F(t,y), with initial conditions

y(0) = y0 and y(0) = ŷ0, respectively. Define Ft(y) = F(t,y). Then, for

k := sup
t∈[0,∞)

M [Ft], (10)

150

∥y(t)− ŷ(t)∥ ≤ ekt∥y0 − ŷ0∥, ∀t ≥ 0. (11)

From Theorem 2.5, when F is infinitesimally contracting, i.e. k < 0, the

trajectories globally and exponentially converge to each other. In the remaining

parts of this paper, the contractivity of a function will refer to the condition (9),

which will imply both infinitesimal contractivity and global contractivity.

To see some effects of contractivitiy on the behaviors of dynamical sys-155

tems with nonlinear vector field F, consider a simple mathematical explanation.

Without loss of generality, the system of differential equations (1) is assumed

to be autonomous for notational convenience. Consider the two systems of

differential equations:

dy

dt
= F(y), y(0) = y0, (12)

dŷ

dt
= F(ŷ) + p(t) ŷ(0) = ŷ0. (13)

The system (13) can be viewed as perturbed system of the system (12). Let160

E(t) = ŷ(t) − y(t) be the difference of the solutions from these two systems.

Then Ė(t) = ˙̂y(t) − ẏ(t) = F(t, ŷ) − F(t,y) + p(t). By using the identity (5)

and ∥E∥ d
dt∥E∥ =

1
2∥E∥

2 = ET Ė = ⟨E, Ė⟩, we have

d

dt
∥E∥ =

1

∥E∥
⟨E, Ė⟩ = 1

∥E∥
⟨E,F(t, ŷ)− F(t,y) + p(t)⟩

=
1

∥E∥
⟨E,F(t, ŷ)− F(t,y)⟩+ 1

∥E∥
⟨E,p(t)⟩

d

dt
∥ŷ − y∥ =

1

∥ŷ − y∥
⟨ŷ − y,F(t, ŷ)− F(t,y)⟩+ 1

∥E∥
⟨E,p(t)⟩

≤ M [F]∥ŷ − y∥+ ∥p(t)∥
d

dt
∥E∥ ≤ M [F]∥E∥+ ∥p(t)∥.
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Integrating the above differential inequality gives

∥E(t)∥ ≤ ∥E(0)∥ eM [F]t +

∫ t

0

∥p(τ)∥ e(t−τ)M [F]dτ. (14)

The above bound illustrates the effects of logarithmic Lipschitz constant on165

certain system’s properties, such as stability and perturbation. As shown in [26],

two fundamental cases should be considered for the error ∥E(t)∥ = ∥ŷ(t)−y(t)∥

using (14).

Case 1: When p(t) = 0, the bound in (14) gives

∥ŷ(t)− y(t)∥ ≤ eM [F]t∥ŷ(0)− y(0).∥

When F is infinitesimally contracting, i.e. M [F] < 0, the solution is exponen-

tially stable.170

Case 2: When E(0) = 0, i.e. the initial conditions y0 and ŷ0 are the same,

the bound in (14) gives

∥ŷ(t)− y(t)∥ ≤ etM [F] − 1

M [F]
max

t∈[0,∞)
∥p(t)∥,

by using straightforward integration. Notice that when F is infinitesimally

contracting, i.e. M [F] < 0, we have etM [F] ∈ (0, 1) and the bound becomes

∥ŷ(t) − y(t)∥ ≤ −1
M [F] maxt∈[0,∞) ∥p(t)∥, which implies that ŷ(t) → y(t) as

maxt∈[0,∞) ∥p(t)∥ → 0.

From the discussion above, it is essential to maintain the contractivity of175

the vector field when constructing the approximate low-dimensional system, so

that the fundamental behaviors of the original system are preserved.

3. Model order reduction

In order to derive a contractivity-preserving reduced-order modeling, this

section will first consider a well-known method called proper orthogonal de-180

composition (POD) and its combination with discrete empirical interpolation

method (DEIM).

Recall the nonlinear differential equation (1) in the form of autonomous system:

dy

dt
= F(y), y(0) = y0, (15)

9



where y : [0,∞) → Rn is the state variable and F : Y ⊆ Rn → Rn is the

nonlinear vector field. Projection-based model reduction method can construct

a reduced-order system by projecting (15) onto a low dimensional subspace.

Let V ∈ Rn×k be a matrix whose columns form a set of an orthonormal basis

of dimension k, where k ≤ n. Then, we can approximate the state variable

y(t) in the space spanned by the columns of V in the form y(t) ≈ Vỹ(t),

where ỹ(t) ∈ Rk. By substituting this approximation into (1), and applying

the Galerkin projection which will give the smallest error of the residual in

the direction of span{V}, i.e. VT
(

d
dtVỹ(t)−

[
VTF(Vỹ(t))

])
= 0. When the

columns of V are orthonormal, the POD reduced system is of the form:

d

dt
ỹ(t) = VTF(Vỹ(t)), ỹ(0) = VT

k y0, (16)

The system (16) is called POD reduced system. In this setting, V can be con-

structed from any orthogonal basis. However, to get an accurate approximation185

from this reduced system, we will consider the basis constructed by Proper

Orthogonal Decomposition (POD), which can optimally extract the dominant

characteristics from any given system of interest.

Proper Orthogonal Decomposition (POD) is also known by other names, for

example, Karhunen-Love decomposition (KLD), Principal Component Analy-190

sis (PCA), or Singular Value Decomposition (SVD). POD has been used with

the Galerkin projection in many applications to reduce number of variable of

large-scaled discretized system, e.g. [1, 2, 3, 4, 5]. One of the most important

properties of POD is that it can construct an approximation that minimizes the

error in 2−norm for a given fixed basis rank k. POD also can be obtained by195

using singular value decomposition (SVD) as discussed next.

Definition 3.1 (POD basis,[31]). Let Y = [y1, . . . ,yns ] ∈ Rn×ns be a snap-

shot matrix with rank r ≤ min{n, ns}. POD basis of dimension k, where k ≤ r,

is the solution to the following optimization problem:

min
Φk∈Rn×k

ns∑
j=1

∥yj −ΦkΦ
T
k yj∥22 such that ΦT

kΦk = Ik (17)

10



where Ik ∈ Rk×k is the identity matrix.

It can be shown [31] that POD basis defined above can be obtained from

the left singular vector of the snapshot matrix Y. Let Y = ÛΣZT be the

singular value decomposition of Y, where matrices Û = [u1, . . . ,ur] ∈ Rn×r

and Ẑ = [z1, . . . , zr] ∈ Rns×r are matrices with orthogonal columns and Σ =

diag(σ1, . . . , σr) ∈ Rr×r is a digonal matrix with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Then

the POD basis of dimension k is V = [u1, . . . ,uk] ∈ Rn×k, k ≤ r and it is

well-known [31] that

ns∑
j=1

∥yj −VVTyj∥22 =

r∑
ℓ=k+1

σ2
ℓ , (18)

which is the sum of the neglected singular values σk+1, . . . , σr from the SVD of

Y.

Although POD-Galerkin can reduce the number of unknowns of the full-200

order system, it may not be able to reduce the complexity for computing the

projected nonlinear term VTF(Vỹ(t)) from (16). To handle this complexity

problem, POD will be used with the discrete empirical interpolation method

(DEIM) [32], which derived from the continuous setting in [15].

DEIM approximates the nonlinear function F(y) by projecting it onto the

space spanned by the columns of a basis matrix U ∈ Rn×m of rank m ≤ n.

The matrix U can be constructed from POD basis of nonlinear snapshot matrix

[F(y1), . . . ,F(yns)], where yi
∼= y(ti). This DEIM approximation is therefore

in the form of Uc(t), for some vector c(t) in Rm. In order to specify c(t), a

greedy selection procedure given in Algorithm1 is used to select m interpolated

row indices of the interpolation approximation. That is, let ℘1, . . . , ℘m be in-

terpolation indices from Algorithm1 corresponding to the input basis set from

U and let P = [e℘1 , . . . , e℘m ] ∈ Rn×m where e℘i = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn

is the ℘i-th column of the identity matrix In ∈ Rn×n, for i = 1, . . . ,m. Since it

has been shown in [32] that PTU is nonsingular, the vector c(t) can be uniquely

solved from

PTF(Vỹ(t)) = (PTU)c(t), (19)
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which gives a closed-form formula c(t) = (PTU)−1PTF(t). Therefore, the ap-

proximation is given by

F(Vỹ(t)) = U(PTU)−1 PTF(Vỹ(t))︸ ︷︷ ︸
m×1

. (20)

In the case when the nonlinear function F is componentwise, we have

F(Vỹ(t)) = U(PTU)−1 F(PTVỹ(t))︸ ︷︷ ︸
m×1

. (21)

Note that, pre-multiplying PT in (19) is equivalent to extracting the m rows205

corresponding to the interpolation indices ℘1, . . . , ℘m, and there is no actual

matrix multiplication required. The procedure for selecting these indices is

shown in Algorithm 1. It chooses each index by aiming to minimize the residual

error r = uℓ −Uc in each iteration ℓ. Finally, the POD-DEIM reduced system

can be written in the following two equivalent forms:210

˙̃y = VTU(PTU)−1PTF(Vỹ), ỹ(0) = VTy0, (22)

˙̃y = VTPF(Vỹ), ỹ(0) = VTy0, (23)

where P := U(PTU)−1PT is an oblique projector.

Algorithm 1 Algorithm to create for Interpolation Indices DEIM

INPUT: {uℓ}mℓ=1 ⊂ Rn linearly independent

OUTPUT: ℘⃗ = [℘1, . . . , ℘m]T ∈ Rm

1: [|ρ|, ℘1] = max{|u1|}

2: U = [u1],P = [e℘1 ], ℘⃗ = [℘1];

3: for ℓ← 2 to m do

4: Solve (PTU)c = PTuℓ;

5: r = uℓ −Uc [|ρ|, ℘ℓ] = max{|r|}

6: U← [U uℓ],P← [P e℘ℓ
], ℘⃗←

 ℘⃗

℘ℓ


7: end

Although DEIM has been successfully used to obtain accurate low-complexity

models in various applications, as can be seen in, e.g. [16, 33, 34, 35], it cannot
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be theoretically proved to preserve stability of original systems through contrac-

tion analysis. This work aims to derive a modified form of POD-DEIM reduced215

system to overcome this problem.

4. Contractivity-preserving model reduction

Motivated by projection-based model reduction approaches described in the

previous section, this section will first propose a general form of model reduc-

tion scheme that preserves contractivity of nonlinear vector fields from original220

systems. The derivation is performed through the Euclidean norm. A specific

form that preserves the contractivity will be considered at the end of this sec-

tion by enforcing certain structure on the modified POD-DEIM reduced system.

The contractivity of the existing POD and POD-DEIM approaches will be also

investigated. It will be shown that while POD reduced systems always preserve225

the contractivity, this may not be true for POD-DEIM reduced systems. The

conditions under which the POD-DEIM approach preserves these properties will

be discussed.

4.1. Proposed General Form

Consider the autonomous differential equation of the form (15). This section230

will propose a general form of the projection-based model reduction that pre-

serves the contractivity of the original system (15) with respect to the Euclidean

norm.

Lemma 4.1. Suppose the nonlinear vector field F in (15) is infinitesimally

contracting, i.e. M [F] < 0. Consider the reduced-order model in the form:235

˙̃y = F̃(ỹ), with F̃(ỹ) = VTWF(WTVỹ) (24)

where ỹ = ỹ(t) ∈ Rk, W ∈ Rn×n and V ∈ Rn×k, for k ≤ n, t ≥ 0. Suppose the

solution y of the original full-order system (15) is approximated by Vỹ. Then

the nonlinear vector field F̃(ỹ) in (24) is also infinitesimally contracting if

WTV ∈ Rn×k has full column rank, i.e. rank(WTV) = k.



Note that the matrix W is introduced in (24) for allowing the reduced sys-240

tem to cooperate additional efficient nonlinear complexity reduction, e.g. as

explained in Section 3.

Proof: Let M [F] and M [F̃] be the logarithmic Lipschitz constants of F and F̃,

respectively. For ũ, ṽ ∈ Rk and u,v ∈ Rn, since F in system (1) is infinitesimally

contracting, i.e. M [F] < 0, then, for W̃ := WTV ∈ Rn×k,245

M [F̃] = sup
ũ ̸=ṽ

(ũ− ṽ)T (F̃(ũ)− F̃(ṽ))

∥ũ− ṽ∥2

= sup
ũ ̸=ṽ

(ũ− ṽ)T (W̃TF(W̃ũ)− W̃TF(W̃ṽ))

∥ũ− ṽ∥2

=
1

K2
sup
ũ ̸=ṽ

(W̃ũ− W̃ṽ)T (F(W̃ũ)− F(W̃ṽ))

∥W̃ũ− W̃ṽ∥2

≤ 1

K2
sup
u ̸=v

(u− v)T (F(u)− F(v))

∥u− v∥2

=
1

K2
M [F] < 0,

where K is a positive constant such that ∥ũ − ṽ∥ = K∥W̃ũ − W̃ṽ∥. The

assumption that W̃ has full column rank guarantees the existence of K > 0 and

ensures that the denominator ∥W̃ũ− W̃ṽ∥ is nonzero. That is, M [F̃] < 0 and

F̃ is infinitesimally contracting. �
The above result can be extended to guarantee the stability and the existence250

of the equilibrium solution of the reduced system in the form (24) as discussed

in Section 2.2.

Proposition 4.2. Suppose the nonlinear vector field F in the full-order system

(15) is infinitesimally contracting, i.e. M [F] < 0. Then

(i) the reduced system (24) preserves the exponential stability of (15) .255

(ii) the reduced system (24) has a unique equilibrium ỹe, i.e. F̃(ỹe) = 0. More-

over, if ye is the unique equilibrium solution of (15), then ye can be approxi-

mated by Vỹe with an error bound given by

∥ye −Vỹe∥ ≤
−∥p∥
M [F]

, where p = F(Vỹe). (25)
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Proof: (i) This part follows from [26] that the solution of the reduced system

satisfies ∥ỹ∥ ≤ eM [F̃]t∥ỹ(0)∥ and that F in system (15) is infinitesimally con-260

tracting: M [F̃] < 0 for t ≥ 0 from the previous lemma.

(ii) First note that , from [26], M [F] < 0 implies that the map F is bijective and

there must be a unique solution ye such that F(ye) = 0. Similarly, from Lemma

4.1, M [F] < 0 implies M [F̃] < 0, which also further gives the existence of the

unique solution ỹe such that F̃(ỹe) = 0. To derive the bound, let p := F(Vỹe)265

and consider ⟨Vỹe−ye,F(Vỹe)−F(ye)⟩
∥Vỹe−ye∥2 ≤M [F]. Since M [F] < 0,

∥Vỹe − ye∥2 ≤ 1

M [F]
⟨Vỹe − ye,p⟩

≤
∣∣∣∣ 1

M [F]

∣∣∣∣ ∥Vỹe − ye∥ ∥p∥

=
−∥p∥
M [F]

∥Vỹe − ye∥

∥Vỹe − ye∥ ≤
−∥p∥
M [F]

.

�
Note that the bound given in (25) can be used to indicate the accuracy of

the approximated equilibrium solution Vỹe from the reduced system (24), even

though we do not know the exact value of ye. In addition, this bound guarantees270

the convergence of the approximate equilibrium, i.e. Vỹe → ye, as ∥p∥ → 0.

Corollary 4.3. Suppose the nonlinear vector field F in the full-order system

(15) is infinitesimally contracting. Then the nonlinear vector field of the POD

reduced system (16) preserves the exponential stability of (15) and has a unique

equilibrium ỹPOD
e . If ye is the unique equilibrium solution of (15), then ye can275

be approximated by Vỹe with the error bound given in (25).

Proof: This is a direct result from Lemma 4.1 and Proposition 4.2 when W = I.

�
While POD reduced system can be shown to be in the form of the reduce

system (24), by setting W = I, DEIM reduced system cannot be rearranged in280

this form. Therefore, the POD reduced system preserves the contractivity of
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the vector field and other properties of the original full-order system as stated

in Corollary 4.3, but POD-DEIM approach does not. The following corollary

provides the condition that guarantees the contractivity as well as stability, of

the resulting POD-DEIM reduced system.285

Corollary 4.4. Let F be the nonlinear vector field of the full-order system (15).

Suppose F is infinitesimally contracting. The corresponding nonlinear vector

field F̂(ỹ) := VTPF(Vỹ) of the POD-DEIM reduced system (22) is infinitesi-

mally contracting if M [PF] < 0, where P = U(PTU)−1PT .

Proof: Consider the POD-DEIM reduced system (22) in the form ˙̃y = F̂(ỹ)290

where F̂(ỹ) := VTPF(Vỹ),

M [F̂] = sup
û ̸=v̂

(û− v̂)T (VTPF(Vû)−VTPF(VT v̂))

∥û− v̂∥2

= sup
û ̸=v̂

(Vû−Vv̂)TP(F(Vû)− F(Vv̂))

∥Vû−Vv̂∥2

≤ M [PF].

That is, M [PF] < 0 implies M [F̂] < 0. �
It is desirable to have a model reduction that can both preserve important

properties of the original systems and maintain low complexity in computing

projected nonlinear term. One possible model reduction formulation in the295

proposed general form (24) is given by

˙̃y = VTPF(PTVỹ), ỹ(0) = VTy0. (26)

When compared with the form (24), the matrix W in (24) is defined as W =

U(PTU)−1PT . This is obtained a modification of the POD-DEIM reduced

system by enforcing a symmetric structure of the form (24). Other specific

formulations are also possible.300

In practical implementation, the vector field F will be separated into linear

and nonlinear terms in actual computation to maintain the accuracy as much

as possible through the linear part. In particular, F will be written as the sum

of two terms: F(y) = Ay + f(y) , where A ∈ Rn×n and f(y) = F(y) − Ay.
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The POD approach will be applied to the linear term Ay and reduced system305

of the form (27) will be used for the nonlinear term f(y), i.e.

˙̃y = Ãỹ +VTPf(PTVỹ), (27)

where Ã = VTAV ∈ Rk×k can be precomputed in advance. The contractivity

results for (27) discussed earlier can still be obtained in the same way, because

logarithmic Lipschitz constants possess the subadditivity property, i.e. M [F] =

M [A+ f ] ≤M [A] +M [f ], where M [A] = µ(A) for constant matrix A ∈ Rn×n.310

Numerical tests in the next section illustrate the efficiency of the proposed

model reduction form given in (27) on a nonlinear reaction-diffusion problem.

5. Numerical Results

Consider the nonlinear reaction-diffusion initial boundary value problem:

∂u

∂t
= ϵ

∂2u

∂x2
+ u− u3, x ∈ Ω = [x0, xf ], t ≥ 0, (28)

with initial condition u(x, 0), and homogeneous boundary conditions u(x0, t) =315

0, u(xf , t) = 0, for t ≥ 0. Before presenting the numerical results, consider

the contractivity of the discretized system, which can be written in the form

du
dt = Au + f(u), where A = ϵ

h2 tridiag[1 − 2 1] ∈ Rn×n is a symmetric

tri-diagonal matrix, f(u) = −u3 + u a componentwise function, and h =
xf−x0

n+1

is the spatial stepsize with n + 1 spatial subintervals (i.e. there are n + 2320

grid points including the two points on the boundaries). Notice that M [A] =

− 4ϵ
h2 sin

2 (πh/2) = −ϵπ2+ϵh2π4/12+O(h4) and M [f ] = maxu∈Rn µ[Jf (u)] = 1,

where the Jacobian of f : Jf (u) = diag(−3u2
1 + 1,−3u2

2 + 1, . . . ,−3u2
n + 1) ∈

Rn×n. The contractivity of f can be checked through the logarithmic Lipschitz

constant M [A+ f ] ≤M [A] +M [f ], by the subadditivity property.325

5.1. Numerical Test 1: Fixed parameter value

This section considers the problem given in (28) with initial condition u(x, 0) =

0.25 sin(x), Ω = [0, 2π] and homogeneous boundary conditions u(0, t) = 0, u(2π, t) =

0, for t ≥ 0.
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In the following numerical tests, we use finite different discretizaion with330

spatial point n = 600 on [0, 2π], time steps = nt = 700 on [0, 5] and ϵ = 0.01.

Figure 1 compares the solutions obtained from the original full-order system

of the form (1) with the solutions from the two reduced models: (i) the POD

reduced system (16), and (ii) the POD-DEIM reduced system that preserves the

monotonicity (27). The results seem to be indistinguishable when the dimension335

k = 30 for POD reduced system and when k = m = 30 for POD-DEIM reduced

system. Note that k is the dimension of POD basis and m is the dimension

of basis used in DEIM approximation. The absolute error and the CPU time

(normalized with the simulation time of the original full-order system) of these

2 reduced models (16) and (27) that preserve monotonicity are given in Table340

1. Notice that, although the POD give more accurate approximations, the pro-

posed model can accurately approximate the solution with much less simulation

time, e.g. POD-DEIM reduce system with k = 30, m = 30 has CPU time

reduced to 0.0024 ≈ 1/400 of the simulation time used for the original system,

while CPU time for POD with k = 30 is only reduced to 0.4781 ≈ 1/2 of the345

time used in the original system.

Figure 1: Solutions of (28) from the full-order system (1), the POD system (16) with

k = 30, and the POD-DEIM system that preserves monotonicity (27) with k = m = 30.

5.2. Numerical Test 2: Varying parameter values

This section considers an application for the same nonlinear reaction-diffusion

equation given in (28) with different initial conditions and using various differ-

ent values of ϵ. The initial condition is u(x, 0) = sin(5πx), the homogeneous350

boundary conditions are u(0, t) = 0, u(1, t) = 0, for t ≥ 0. The finite differ-
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POD Relative Runtime

basis (k) Error (scaled)

Full: n = 600 - 1

k = 10 2.4601e-06 0.4433

k = 20 3.7046e-07 0.4569

k = 30 1.7271e-07 0.4781

k = 40 1.0819e-07 0.4896

k = 50 3.3184e-08 0.4931

DEIM (m) Relative Runtime

POD k = 30 Error (scaled)

Full: n = 600 - 1

m = 10 4.1170e-02 0.0021

m = 20 6.2412e-03 0.0022

m = 30 4.1483e-03 0.0024

m = 40 5.4461e-04 0.0029

m = 50 1.4553e-04 0.0031

Table 1: Runtime and relative error of the POD reduced system (left) the POD-DEIM

reduced system with monotonicity preserved (right). Each runtime is normalized with

the CPU time of the original full-order system (dimension n = 600).

ence discretization is used with spatial point n = 1000 on [0, 1] and the number

of time steps is = nt = 100 on [0, 2] .

Figure 2: Solutions of (28) from the full-order system (n = 1000, ϵ = 0.01)

The three plots in Figure 3 illustrate, respectively, the full-order solutions

with the parameter values ϵ = 0.001 and ϵ = 0.1 and the singular values, which355

are corresponding to the POD basis of the solution snapshots from these two

parameters.

The POD basis sets for projecting the solution and for the DEIM nonlinear
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Figure 3: Solution Snapshots of (??) (n = 1000) with ϵ = 0.001 and ϵ = 0.1.

Figure 4: Solutions of (28) from the full-order system (n = 1000) with parameter

ϵ = 0.0025, 0.005, 0.0250.05.

Figure 5: Solutions of (28) from the POD reduced system (n = 1000) with parameter

ϵ = 0.0025, 0.005, 0.0250.05.
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Figure 6: Solutions of (28) from the structure-preserving POD-DEIM reduced system

(n = 1000) with parameter ϵ = 0.0025, 0.005, 0.0250.05.

approximation are constructed from the solution snapshots shown in Figures 4,

which are corresponding to 2 parameter values ϵ = 0.001 and ϵ = 0.1. This360

numerical test considers the solutions corresponding to different parameter val-

ues, i.e. ϵ = 0.0025, 0.005, 0.0250.05. The resulting solutions from the full-order

systems are shown in Figures 4. The solutions from the POD reduced system in

Figure 5 shown to accurately capture the dynamics of the original systems al-

though the basis sets employ snapshots from different parameter values. Similar365

observations can be obtained from the solutions from the structure-preserving

POD-DEIM reduced system in Figure 6. Note however, that the simulation

time of the POD reduced systems is roughly a factor of 1/30 less than the simu-

lation time used for the original full-order system while the structure-preserving

POD-DEIM reduced system can further the simulation time approximately to370

a factor of 1/200.

6. Conclusion

This work proposes a general form of nonlinear reduced-order modeling that

preserves the contractivity property of the original systems, which can be used

for guaranteeing the existence, uniqueness of the solution, and stability of the375

dynamical system. A specific formulation presented and used in this work is

based on POD and DEIM approaches with some modification. Other specific
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forms are still possible and left for future research. The numerical tests on the

nonlinear reaction diffusion problem demonstrate that, while preserving nega-

tive monotonicity, the proposed model can accurately approximate the solutions380

with much less simulation time.
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