

บทคัดย่อ

รหัสโครงการ : TRG58800247

ชื่อโครงการ : เข้ามาเรียฟลชิพาร์ม: บทบาท transcription-associated proteins ในการควบคุมการแสดงออกของยีนต่อยาในกลุ่มอาร์ทีมีชินิน

ชื่อนักวิจัย : อาจารย์ ดร. องคุมาณ ถลาง คณะสหเวชศาสตร์ มหาวิทยาลัยธรรมศาสตร์

E-mail Address : onguma382@yahoo.com

ระยะเวลาโครงการ : 2 ปี

มาเรียฟลชิพาร์มเป็นโรคที่มีความสำคัญเป็นอย่างมากและเป็นหนึ่งในโรคที่มีการติดเชื้อออย่างแพร่หลาย พน การติดเชื้อในประชากรมากกว่า 200 ล้านคน และพบการเสียชีวิตอย่างน้อย 600,000 คนต่อปี ปัจจุบันยาในกลุ่มอาร์ทีมีชินิน Artemisinin based combination (ACT) ถูกใช้เป็นการรักษาหลักเมื่อมีการติดเชื้อมาเรียฟลชิพาร์ม อย่างไรก็ตามปัจจุบันนี้ได้พัฒนาด้วยของเข้ามาเรียต่อยาชนิดนี้ จึงถือเป็นภัยคุกคามที่สำคัญอย่างยิ่งต่อการรักษา โรคมาเรีย แม้ว่ามีความพยายามในการศึกษากลไกการออกฤทธิ์ของยา แต่ปัจจุบันก็ยังคงไม่สามารถอธิบายกลไกได้ อย่างล่องแท้ เมื่อไม่นานมานี้ การศึกษาที่ранสคริปโตมและโปรต็อโนมิกส์พบว่าการตอบสนองต่อยาของเข้ามาเรีย อาจจะมีผลจากการควบคุมการแสดงออกของยีนส์โดย transcription-associated proteins (TAPs) โดยการเปลี่ยนแปลงของการแสดงออกของยีนนี้อาจจะมีส่วนร่วมในการเปลี่ยนแปลงของการแสดงออกของยีนส์ของเชื้อ มาเรียที่ดื้อยาในกลุ่มอาร์ทีมีชินิน ดังนั้นเราจึงศึกษาบทบาทของ TAPs ในการควบคุมการแสดงออกของยีนส์ โดยเฉพาะการตอบสนองของเข้ามาเรียต่อยาในกลุ่มอาร์ทีมีชินิน เนื่องจากการขาดแคลนของ Antibody ใน การศึกษา transcription-associated proteins ในเชื้อมาเรียฟลชิพาร์ม เราจึงได้พัฒนาเทคนิคการtransfection สำหรับเชื้อมาเรียฟลชิพาร์ม เพื่อการผลิต stable episomal transfectionเพื่อการติดฉลากโปรตีนด้วยสารเรืองแสงสีเขียว โดยการใช้เทคนิคโคลนนิ่งและติดฉลากด้วยสารเรืองแสงสีเขียว การเข้าถึงคุณลักษณะของโปรตีนเหล่านี้จะ ถูกติดตามโดยใช้กล้องจุลทรรศน์ฟลูออเรสเซนซ์ เพื่อให้เห็นลักษณะของตำแหน่งของโปรตีนในเชื้อมาเรีย การศึกษาแสดงออกของยีนส์ TAPs โดยใช้เทคนิคปฏิกริยาลูกลิปอเลิมอเรสแบบเรียลไทม์เพื่อติดตามการแสดงออก ของยีนส์ในระยะต่างๆของเชื้อมาเรีย จากการพัฒนาเทคนิคการtransfection เพื่อสร้างพลาสมิดสำหรับ episomal transfection นี้ในการศึกษานี้ สามารถทำได้การสำเร็จในการติดฉลากโปรตีนด้วยสารเรืองแสงสีเขียว การติดตามตำแหน่งของ TAPs ใน 3 โปรตีนคือ PF3D7_1128600, PF3D7_1006200 และ PF3D7_1126900 พบว่ามีการแสดงออกที่ตำแหน่งต่างๆกัน โดยพบได้ที่ไซโตพลาซึมของระยะโทรโพซอยต์และไซซอนต์ การศึกษาแสดงออกของยีนส์ TAPs ใน 18 ยีนส์ พบว่ามี 15 ยีนส์ ที่มีการแสดงออกของยีนส์ที่สูงขึ้นและ 3 ยีนส์ ที่มีการแสดงออกของยีนส์ที่ต่ำลงจากการตอบสนองต่อยาในกลุ่มอาร์ทีมีชินิน การศึกษานี้พบว่าการพัฒนาเทคนิคการtransfection ของเชื้อมาเรียฟลชิพาร์มเป็นเทคนิคที่ประสิทธิภาพในการใช้ศึกษาติดตามการแสดงออกของโปรตีน ในกลุ่ม TAPs ในด้านติดตามตำแหน่งของโปรตีนในเชื้อมาเรีย การศึกษาเพิ่มเติมในยีนส์อื่นๆในกลุ่มควรจะมีเพื่อ การเข้าใจภาพรวมของ RNA binding proteins ของเชื้อมาเรียฟลชิพาร์ม การศึกษานี้ได้ขยายมิติใหม่ในศึกษาการแสดงออกของยีนส์ของเชื้อมาเรียฟลชิพาร์ม และทำให้เพิ่มองค์ความรู้ในการศึกษากลไกการตอบสนองของเชื้อมาเรียต่อยาต้านในกลุ่มอาร์ทีมีชินิน การรวบรวมผลการศึกษานี้กับการศึกษาการแสดงออกของยีนส์ที่มีอยู่ในขณะนี้ ทำให้เราสามารถเข้าใจในชีววิทยาของเชื้อมาเรียมากขึ้นและสามารถนำไปสู่การพัฒนาการรักษาโรคมาเรียในอนาคตต่อไป

คำหลัก: อาร์ทีมีชินิน, gene expression, เข้ามาเรียฟลชิพาร์ม, Transcription factor Proteins (TAPs)

Abstract

Project Code : TRG58800247

Project Title : Development of molecular techniques for characterization of transcription-associated proteins in *Plasmodium falciparum* in response to artemisinins

Investigator : Dr.Onguma Natalang, Faculty of allied health sciences, Thammasat university

E-mail Address : onguma382@yahoo.com

Project Period : 2 years

Malaria remains the most important parasitic infection and one of the most prevalent infectious diseases. More than 200 million cases and at least 600,000 consequent deaths are estimated to occur annually. Artemisinin based combination (ACT) drugs have been recommended by the World Health Organization as the first-line treatment to be used effectively against *P. falciparum*. Artemisinin and its derivatives resistance have emerged. It is considered as a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment in the malaria-endemic World. Although progressed efforts have been made, the mechanism underpinning drugs action has not been well understood. Recently, it was suggested that transcription-associated proteins (TAPs) are importance and essential in parasitic response to artemisinins. Comparative transcriptomic and proteomic analyses of *Plasmodium* spp. suggested the differential expression of these genes encoding regulatory factors may contribute to the global changes in the transcriptome observed in the artemisinin resistant parasites. Therefore, we studied the role of TAPs in the regulation of gene expression of *Plasmodium falciparum* is particularly of interesting in the mechanism of malaria parasite responding to artemisinins. Due to the lack of antibodies against transcription-associated proteins for *P. falciparum*, we developed transient transfection platform for *P. falciparum* to produce the stable episomal transfection parasite which TAPs tagging with green fluorescent protein (GFP) protein by using DNA Cloning and tagging with green fluorescent protein (GFP) protein. The characterization of TAPs were performed using fluorescence microscope to visualize and localize the proteins within malaria parasite. The expression profile of TAPs were performed by using quantitative real-time PCR technique to investigate gene expression profiles during erythrocyte stage development. Plasmids were successfully construction for episomal transfection *P.falciparum* which TAPs tagging with green fluorescent protein (GFP) protein. The localization of TAPs proteins were performed for 3 proteins: PF3D7_1128600, PF3D7_1006200 and PF3D7_1126900 showing differences location within malaria parasite but mainly to cytoplasm of trophozoite and schizont stages. Gene expression of transcription-associated proteins (TAPs) of 18 genes studying showed 15 genes are over-expressed and 3 genes are under-expressed which have dynamic changes of the transcription reflecting drug-exposure. The result demonstrates that the developed transient transfection platform for *P. falciparum* is an effective tool to visualize the localization of particular RNA binding proteins of the malaria parasite. The characterization of TAPs is importance for studying mechanism of malaria parasite responding to artemisinins. The further study for the other RNA binding protein fused to GFP proteins could be generated and would provide a better overall view of RNA binding proteins in *P. falciparum*. This studies provide novel insights into the parasite transcription and thus allow better understanding of mechanism of the drug action. This study together with the previously published expression profiles will help for better understanding of *P. falciparum* biology and may lead to the potential development of novel therapeutic agents for malaria.

Keywords: Artemisinins; gene expression; *Plasmodium falciparum*; Transcription factor Proteins (TAPs)