

บทคัดย่อ

อนุพันธ์สไปโรไบฟลูออรีนที่มีหมู่ปิดท้ายเป็นหมู่เมทอกซีเบนซิน (KW1) และอนุพันธ์ไพรีนที่มีหมู่ให้อิเล็กตรอนเป็นหมู่คาร์บาโซล (PyCar1-3) และหมู่ให้อิเล็กตรอนฟีนิลแวนฟิลามีน (PyNap) ถูกออกแบบและสังเคราะห์ขึ้นด้วยปฏิกิริยาไอโอดีนเข้ม บรูมิเนชัน ชูชูกิคับปลิง และอุลามานคับปลิงเป็นหลัก เพื่อใช้เป็นสารส่งผ่านประจุบวกในเซลล์แสงอาทิตย์ชนิดสีเหลืองไวแสงแบบของแข็ง จากการศึกษาสมบัติการดูดกลืนแสงพบว่า KW1 มีแบบการดูดกลืนแสง 2 ช่วงได้แก่การดูดกลืนแสงแบบไฟ-ไฟที่ค่าความยาวคลื่นสูงสุด 230 nm ซึ่งเป็นแบบการดูดกลืนแสงของหมู่เมทอกซีเบนซินและปรากวูแบบการดูดกลืนแสงชนิดไฟ-ไฟของทั้งโมเลกุลที่ค่าการดูดกลืนแสงสูงสุด 358 nm ในขณะที่ PyCar1 PyCar2 PyCar3 และ PyNap พบรูปแบบการดูดกลืนแสงสูงสุดที่ 347 342 358 และ 355 nm และพบรูปแบบการเรืองแสงสูงสุดที่ 457 487 472 และ 468 nm ตามลำดับ นอกจากนี้ ยังได้ทำการศึกษาสมบัติเชิงความร้อนของ KW1 และพบรูปว่า KW1 มีอุณหภูมิที่ทำให้น้ำหนักของสารหายไปร้อยละ 5 เท่ากับ 248 °C และไม่พบอุณหภูมิคล้ายแก้ว (T_g) และอุณหภูมิหลอมเหลว (T_c) แสดงว่าสารที่สังเคราะห์ได้มีคุณสมบัติเป็นของแข็งอสัณฐานซึ่งเหมาะสมแก่การนำไปขึ้นรูปเป็นเซลล์แสงอาทิตย์ชนิดสีเหลืองไวแสงแบบของแข็ง

คำสำคัญ : เซลล์แสงอาทิตย์ชนิดสีเหลืองไวแสง สไปโรไบฟลูออรีน คาร์บาโซล ไพรีน

Abstract

Spirobifluorene derivative end-capped methoxybenzene (KW1) and pyrene derivatives end-capped with carbazole donor (PyCar1-3) and phenyl naphthylamine donor (PyNap) were designed and synthesized using iodination, bromination, Ullmann coupling and Suzuki coupling reaction. The optical properties of all synthesized materials were studied and found that KW1 shows two distinguished absorption bands at 230 nm which are attributed to the $\pi-\pi^*$ transition of benzene ring whereas the band at 358 nm indicates $\pi-\pi^*$ transition of entire molecules. PyCar1, PyCar2, PyCar3 and PyNap show maximum absorption at 347, 342, 358 and 355 nm, respectively which are attributed to localized $\pi-\pi^*$ transitions of the entire molecules without the Intramolecular Charge Transfer (ICT) bands of accepter pyrene. Moreover they also show maximum emission at 457, 487, 472 and 468 nm, respectively. The thermal properties of KW1 were studied by DSC and TGA techniques and found that KW1 shows 5% weight loss at 248 °C, whereas T_g and T_c were not found indicating that KW1 was amorphous solid. All physical properties of the synthesized materials indicate that they can be used as hole transporting materials in solid state dye-sensitized solar cells.

Keywords: solid-state dye sensitized solar cells, spirobifluorene, carbazole, pyrene