

Abstract

The objective of this study was to evaluated fermented feed with microbial inoculation on fermentation quality, *in vitro* gas production, nutrient digestibility, ruminal fermentation and ecology in crossbred beef cattle. Three experiments were conducted including *in vitro* gas production technique and *in vivo* experiment with crossbred beef cattle. **Experiment I:** aim to evaluated fermentation quality and nutritive values of fermented feed. The experiment was completely randomized design. The treatments included 16 according to culture mixed of microbial as; (1) *Rhizopus oligosporus* TISTR 3001, (2) *Lactobacillus buchneri*, (3) *Aspergillus oryzae* TISTR 3019, and (4) *Saccharomyces cerevisiae*. The fermented feed was analyzed for fermentation quality and nutritive values. It was suggested that fermented feed inoculated with *R. oligosporus* only or mixed inoculant between *L. bruchnari* and *S. cereverceae* or *R. oligosporus* could be higher in gas production than those mixed inoculation. **Experiment II:** were conducted by using an *in vitro* gas technique at various incubation times. The experiment was completely randomized design. The treatments were continued from experiment 1 by various microbial inoculum in total mix ration. The gas production was recorded and fitted to the model as $y = a + b(1 - e^{(-ct)})$. Inoculum's ruminal fluid were used for NH₃-N, VFA, true digestibility and microbial mass analysis. It was found that TMR formulation with different in roughage sources was not affect but supplementation with fermented feed by single inoculum as *R. oligosporus*, *S. cereverceae* or mixed inoculum between *L. bruchnari* and *S. cereverceae* or *R. oligosporus* could be higher in gas production and *in vitro* digestibility than other inoculation. However, animal trial with intake and nutrients utilized could be conducted. **Experiment III:** Four, crossbred beef steer was randomly assigned to a 4x4 Latin square design. Four dietary treatments were as follows: TMR feed with 0%, 5%, 10% and 20% of fermented feed, respectively. The experiment will be 4 periods, and each lasted 21 d. Feeds, refusals and fecal samples were analyzed for DM, CP, ADF, NDF and ash. Rumen fluid were analyzed for pH, temperature, NH₃-N, VFA, direct counts of protozoa and fungal zoospores. It was found that TMR diet with 10% of fermented feed resulted in improvement of feed intake, apparent nutrients digestibility and rumen fermentation rumen microorganism, microbial crude protein synthesis, predominant cellulolytic bacteria, improved N utilization, while it did not adversely effect on hematological parameters in crossbred beef cattle. Based on this research it concluded that TMR feed with fermented feed by using *R. oligosporus* and *S. cereverceae* can be an effective for ruminant animals. However, the result should be conducted under farm conditions to evaluated the animal performance and cost effective.

Keywords : Fermented feed, microbial inoculation, TMR feed, beef cattle

บทคัดย่อ

วัตถุประสงค์ของการศึกษาครั้งนี้เพื่อประเมินผลของการเสริมเชื้อจุลินทรีย์ในอาหารหมักต่อคุณภาพการหมัก การย่อยได้ในหลอดทดลอง การย่อยได้ของโภชนา กระบวนการหมักในกระบวนการเพาะรูmen และนิเวศวิทยารูmen ในโคเนื้อลูกผสม โดยการวิจัยแบ่งออกเป็น 3 การทดลอง ซึ่งประกอบด้วยการศึกษาในห้องปฏิบัติการด้วยเทคนิคการวัดผลผลิตแก๊สในหลอดทดลอง และการทดลองในโคเนื้อลูกผสม การทดลองที่ 1 มีวัตถุประสงค์เพื่อประเมินคุณภาพการหมักที่เป็นผลจากการเสริมจุลินทรีย์รวมในอาหารผสมสำเร็จหมัก โดยใช้แผนการทดลองแบบสุ่มสมบูรณ์ที่ประกอบด้วยทรีทเม้นต์ทั้งหมด 16 ทรีทเม้นต์จากการรูปแบบการเสริมจุลินทรีย์ (1) *Rhizopus oligosporus* TISTR 3001, (2) *Lactobacillus buchneri*, (3) *Aspergillus oryzae* TISTR 3019, และ (4) *Saccharomyces cerevisiae*. ผลการทดลองพบว่า องค์ประกอบทางเคมีของอาหารหมักที่ใช้เชื้อจุลินทรีย์กลุ่ม *R. oligosporus* อย่างเดียวและยีสต์ หรือการใช้จุลินทรีย์ผลิตกรดแลคติคร่วมกับยีสต์ หรือ *R. oligosporus* ทำให้อาหารหมักมีคุณภาพดีกว่ากลุ่มอื่น การทดลองที่ 2 ศึกษาผลของการหมักในอาหารผสมสำเร็จด้วยเทคนิค *in vitro* *gas* โดยใช้แผนการทดลองแบบสุ่มสมบูรณ์ มีทรีทเม้นต์ที่ได้จากการทดลองที่ 1 ร่วมกับอาหารหยาบที่เป็นพางผสมในอาหารผสมสำเร็จรูป (TMR) ตามสูตรที่คำนวณไว้ที่มีความเท่ากันของในต่อเจน เทคนิคการวัดผลผลิตแก๊สโดยใช้สมการ $y = a + b(1 - e^{-ct})$ ทั้งหมด 13 ช่วงเวลา เพื่อใช้ประเมินจลศานต์แก๊สและการย่อยได้ในหลอดทดลอง ของเหลวในหลอดทดลองนำไปวิเคราะห์กรดไขมันที่ระเหยได้ง่ายและแอมโมเนียในต่อเจน และคำนวณจุลินทรีย์มวลรวม จากการทดลองพบว่า อาหารหมักที่ใช้เชื้อจุลินทรีย์กลุ่ม *R. oligosporus* อย่างเดียวและยีสต์ หรือการใช้จุลินทรีย์ผลิตกรดแลคติคร่วมกับยีสต์ หรือ *R. oligosporus* ทำให้การผลิตแก๊สและย่อยได้ และจุลินทรีย์มวลรวมมากกว่าอาหารหมักกลุ่มอื่น อย่างไรก็ตามการทดลองในตัวสัตว์เพื่อยืนยันผลของการใช้อาหารหมักในอาหารผสมสำเร็จต่อการกินได้และย่อยได้ต่อไป การทดลองที่ 3 ทำการศึกษาผลของการหมักในอาหารผสมสำเร็จต่อกระบวนการหมักในกระบวนการเพาะรูmen ปริมาณแก๊สมีเทน การสังเคราะห์จุลินทรีย์โปรตีนและปริมาณการย่อยได้ของโภชนา ในโคเนื้อ ใช้โคเนื้อลูกผสม 4 ตัว (น้ำหนักเฉลี่ย 158 ± 40.2 กิโลกรัม) ในแผนการทดลอง 4×4 จัตุรัสลิติน โดยมีอาหารผสมสำเร็จรูปที่มีระดับอาหารหมักเป็นองค์ประกอบ 0%, 5%, 10% และ 20% ตามลำดับ ในวันสุดท้ายจะทำการสุ่มเก็บของเหลวจากกระบวนการเพาะรูmen สุ่มเก็บตัวอย่างอาหารผสมสำเร็จที่ให้อาหารเหลือและมูลทำการวิเคราะห์องค์ประกอบทางเคมี ทำการวิเคราะห์หาความเข้มข้นของแอมโมเนียในต่อเจน กรดไขมันที่ระเหยได้ง่าย จากการทดลองพบว่า ปริมาณการกินได้วัตถุแห้งและสัมประสิทธิ์การย่อยได้ของโภชนาของอาหารผสมสำเร็จไม่แตกต่างกันทางสถิติ ($P > 0.05$) แต่มีแนวโน้มที่จะเพิ่มขึ้นตามระดับอาหารหมัก แต่ประชากรของจุลินทรีย์ในกระบวนการเพาะรูmen กลุ่มย่อยเยื่อไยเพิ่มขึ้น แต่ความเป็นกรด-ด่างในกระบวนการเพาะรูmen ของอาหารหมักที่ระดับ 20% มีค่าสูงที่สุด 121.36 mmol/ml ($P < 0.05$) ขณะที่สัดส่วนของกรดโพธิโนนิกของโคที่ได้รับอาหารหมัก 20% มีค่าสูงที่สุด แต่สัดส่วนของกรดบิวทริก ไม่แตกต่างกันทางสถิติ ดังนั้น ในการใช้อาหารหมักที่เสริมเชื้อจุลินทรีย์ *R. oligosporus* และ *S. cereverceae* (10^5 cll/ml) ในอาหารผสมสำเร็จหมักที่ระดับ 20% สามารถเพิ่มปริมาณการกินได้และการย่อยได้ของโภชนา อย่างไรก็ตามยังมีความจำเป็นที่จะต้องศึกษาชนิดของจุลินทรีย์ในอาหารในระดับฟาร์มต่อไป

คำสำคัญ: อาหารหมัก, เชื้อจุลินทรีย์เสริม, อาหารผสมสำเร็จ, โคเนื้อ

Acknowledgements

First of all, I would like to express my most sincere thanks to the Thailand Research Fund through the Research Grant for New Scholar (grant no. TRG5880256), and the Department of Agriculture and Resources, Faculty of Natural Resources and Agro-Industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, for providing research financial and facilities supports. I would like to express my deepest and most personal sincere gratefulness to Professor Dr. Metha Wanapat, my Mentor, Department of Animal Science, Faculty of Agriculture, Khon Kaen University, for guiding to receive scholarship and encouraged me to conducting the research work.