Determining singularities using row sequences of Hermite-Pad? approximants, simultaneous Pad?-Faber approximants, and simultaneous Pad? (?; ?)-approximants
หัวหน้าโครงการ
:
ณัฐพงษ์ โบสุวรรณ
ทีมวิจัย
:
ณัฐพงษ์ โบสุวรรณ
หัวหน้าโครงการ
ชนม์ทิตา รัตนกุล
นักวิจัยที่ปรึกษา
วันที่เริ่มโครงการ
:
3 เม.ย. 2560
วัตถุประสงค์
:
This project is considered to be a continued collaboration with Prof. G. L?pez Lagomasino. After we successfully generalized direct and inverse results on row sequences of Hermite-Pad? approximants from the classical construction [6] to orthogonal polynomial construction [7], we strongly believe the techniques used to prove the results in [7] can be adapted to prove analogous results for simultaneous Pad?-Faber approximants and simultaneous Pad? -approximants. One of the main goals of this proposal is to obtain results similar to those in [6] for simultaneous Pad?-Faber approximants and simultaneous Pad? -approximants. The next question is related to classical Hermite-Pad? approximants. We want to investigate the analytic properties of the limit points of the poles of classical Hermite-Pad? approximants on row sequences without a priori assumption that the poles of the approximants tend to their limits at the rate of a geometric progression.