รายละเอียดโครงการวิจัย
รหัสโครงการ : RTA5780007
ชื่อโครงการ : ทฤษฎีจุดตรึงสำหรับการส่งไม่เชิงเส้นและการประยุกต์ไปยังปัญหาทางสมดุลและปัญหาการหาค่าที่เหมาะสม
  Fixed Point Theory for Nonlinear Mappings and Applications to Equilibrium and Optimization Problems
หัวหน้าโครงการ : สุเทพ สวนใต้ : [งานวิจัยที่เกี่ยวข้อง (4 โครงการ) ]
ทีมวิจัย :
สุเทพ สวนใต้
หัวหน้าโครงการ
พรพิมล บริวัน
นักวิจัยร่วมโครงการ
ณัฐวุฒิ บุญลือ
นักวิจัยร่วมโครงการ
อดิศักดิ์ หารจริง
นักวิจัยร่วมโครงการ
มนต์ธิรา สุวรรณประภา
นักวิจัยร่วมโครงการ
คณิติน สมานมิตร
นักวิจัยร่วมโครงการ
ขวัญชัย กันไว
นักวิจัยร่วมโครงการ
ฉลองชัย กล้าณรงค์
นักวิจัยร่วมโครงการ
พิกุล ศรีดารัตน์
นักวิจัยร่วมโครงการ
จักรพงษ์ เตี้ยมมี
นักวิจัยร่วมโครงการ
วิฑูรย์ พึ่งรัตนา
นักวิจัยร่วมโครงการ
ภักดี เจริญสวรรค์
นักวิจัยร่วมโครงการ
อาทิตย์ แข็งธัญการ
นักวิจัยร่วมโครงการ
วัชรภรณ์ ช่อลำเจียก
นักวิจัยร่วมโครงการ
ธนะศักดิ์ หมวกทองหลาง
นักวิจัยร่วมโครงการ
จักรกฤษ กลิ่นเอี่ยม
นักวิจัยร่วมโครงการ
บัญชา ปัญญานาค
นักวิจัยร่วมโครงการ
อรรถพล แก้วขาว
นักวิจัยร่วมโครงการ
นรินทร์ เพชร์โรจน์
นักวิจัยร่วมโครงการ
เจษฎา ธารีบุญ
นักวิจัยร่วมโครงการ
วันที่เริ่มโครงการ : 1 ก.ย. 2557
วัตถุประสงค์ : To investigate various properties of important classes of nonlinear mappings that related to fixed point problem and give some sufficient conditions in order to obtain new existence theorems for those nonlinear mappings in Hilbert spaces, Banach spaces, complete metric spaces, convex metric spaces, R-tree and CAT(k) spaces.

2.2 To construct new iterative methods for approximation fixed points of various kinds of nonlinear mappings and finding a common fixed point of a finite and infinite family of those nonlinear mappings studied in the objective (1), and give some sufficient conditions for proving weak and strong convergence theorems of the studied iterative methods for those mappings. Moreover, we also study the rate of convergence and stability of the studied iterative methods.

2.3 To prove existence results concerning equilibrium and optimization problems and construct new iterative methods for finding a solution of those problems and a common element of the set of equilibrium problems, variational inequality problems and fixed point problems, and give some control conditions to prove weak and strong convergence theorems of those methods.

2.4 To construct and study new types of monotone multi-valued mappings in partially ordered metric spaces and find some sufficient conditions for which each types of the studied mappings has a fixed point and a maximal and minimal fixed points.

2.5 To construct and study new classes of graph-preserving multi-valued mappings in complete metric spaces with graphs and find some sufficient conditions for which each type of the studied mappings has a fixed point.

2.6 To construct and investigate new types mixed monotone multi-valued mappings in partially ordered metric spaces and find some sufficient conditions for which each type of mappings has a coupled fixed point, coupled coincidence point and a coupled common fixed point.

2.7 To construct and investigate new types mixed graph-preserving multi-valued mappings in complete metric spaces with graphs and find some sufficient conditions for which each type of mappings has a coupled fixed point,h a coupled coincidence point and a coupled common fixed point.

2.8 To investigate existence of common fixed points for semigroup of nonlinear mappings in Hilbert spaces, Banach spaces, complete metric spaces, convex metric spaces, R-tree and CAT(k) spaces.

2.9 To apply the new knowledge (new theorems) obtained from the project for solving some problems in game theory, Nash equilibria of non-cooperative games, existence problems for ordinary differential equations.

2.10 To develop software program for solving fixed point problems, equilibrium problems and optimization problems.

2.11 To build and develop new and young researchers in the area of fixed point

theory and applications for developing human resource and high standard

academic researches.

2.12. To create research network both inside and outside of the country for making

cooperation in doing research in this area.

สถิติการเปิดชม : 623 ครั้ง
ดาวน์โหลด : 33 ครั้้ง
  แจ้งปัญหาการดาวน์โหลดที่นี่
(* หากไม่สามารถดาวน์โหลดได้)
รายงานวิจัย ฉบับสมบูรณ์: รายงานวิจัยฉบับสมบูรณ์ (Full Paper)
บทคัดย่อ (Abstract) :
แสดงบทคัดย่อ


เลือกดาวน์โหลดแบบลิงค์
:
 

Telephone

02 278 8200

Address

ชั้น 14 อาคาร เอส เอ็ม ทาวเวอร์ 979/17-21 ถนนพหลโยธิน แขวงสามเสนใน เขตพญาไท กรุงเทพฯ 10400